res = yolo_model(img)的res格式

时间: 2024-06-02 16:11:11 浏览: 15
在YOLO模型中,`res`通常是一个元组,包含三个元素: 1. `res[0]`是一个形状为`(batch_size, grid_size, grid_size, num_anchors, num_classes)`的张量,表示每个锚框对应每个类别的预测概率; 2. `res[1]`是一个形状为`(batch_size, grid_size, grid_size, num_anchors, 4)`的张量,表示每个锚框的位置和尺寸信息,四个元素分别为`(x,y,w,h)`; 3. `res[2]`是一个形状为`(batch_size, image_height, image_width, 3)`的张量,表示模型的预测结果图像,其中3个通道分别为`(r,g,b)`。 需要注意的是,`res`的具体格式可能会因不同YOLO模型的实现而有所不同。
相关问题

bboxes, scores, cls_inds = yolo_utils.postprocess( bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh=0.3, size_index=size_index) im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)

这段代码使用 YOLO 检测模型的预测结果进行后处理,并将检测结果绘制在图像上。 首先,调用 `yolo_utils.postprocess()` 函数,传入预测的边界框 (`bbox_pred`)、IoU 预测 (`iou_pred`)、类别概率预测 (`prob_pred`)、图像的形状 (`image.shape`)、配置信息 (`cfg`) 以及其他参数。这个函数会根据预测结果和配置信息进行后处理,得到最终的边界框、置信度和类别索引。 然后,将获取到的边界框 (`bboxes`)、置信度 (`scores`) 和类别索引 (`cls_inds`) 传入 `yolo_utils.draw_detection()` 函数。这个函数会将边界框、置信度和类别信息绘制在原始图像上,生成一个新的图像 `im2show`。 通过这段代码,可以对 YOLO 检测模型的预测结果进行后处理,并可视化显示检测结果。

if isinstance(model, nn.DataParallel): model = model.module yolo_layers = get_yolo_layers(model)

这段代码的作用是将一个经过 nn.DataParallel 包装的模型解包成原始模型。在 PyTorch 中,nn.DataParallel 可以用于将模型并行化处理,以提高训练速度。但是,当需要保存或加载模型时,我们需要将其还原为原始模型。因此,这段代码中的操作就是将 nn.DataParallel 包装的模型中的 module 提取出来,以得到原始模型。接下来,代码中的 get_yolo_layers 函数会获取原始模型中的 YOLO 模型层。

相关推荐

import torch from djitellopy import Tello import cv2 import numpy as np import models from models import yolo def get_model(): # 假设 'yolov5s.yaml' 是 yolov5s 模型的定义文件的路径 model = models.yolo.Model('models/yolov5s.yaml') checkpoint = torch.load('weights/yolov5s.pt') model.load_state_dict(checkpoint['model']) model.eval() return model def preprocess_frame(img): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (640, 640)) # 将图像大小调整为模型的输入大小 img = img / 255.0 # 将像素值归一化到 [0, 1] img = np.transpose(img, (2, 0, 1)) # 将图像从 HWC 格式转换为 CHW 格式 img = torch.from_numpy(img).float() # 将 Numpy 数组转换为 PyTorch 张量 img = img.unsqueeze(0) # 增加一个批量维度 return img def process_frame(model, img): img_preprocessed = preprocess_frame(img) results = model(img_preprocessed) # 处理模型的输出 results = results[0].detach().cpu().numpy() # 将结果从 GPU 移动到 CPU 并转换为 Numpy 数组 for x1, y1, x2, y2, conf, cls in results: # 将坐标从 [0, 1] 范围转换回图像的像素坐标 x1, y1, x2, y2 = x1 * img.shape[1], y1 * img.shape[0], x2 * img.shape[1], y2 * img.shape[0] # 在图像上画出边界框 cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) # 在边界框旁边显示类别和置信度 cv2.putText(img, f'{int(cls)} {conf:.2f}', (int(x1), int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) # 显示图像 cv2.imshow('Tello with YOLOv5', img) return cv2.waitKey(1) def main(): tello = Tello() tello.connect() tello.streamon() frame_read = tello.get_frame_read() model = get_model() frame_skip = 2 # 每两帧处理一次 counter = 0 while True: if counter % frame_skip == 0: # 只处理每两帧中的一帧 img = frame_read.frame process_frame(model, img) counter += 1 cv2.destroyAllWindows() if __name__ == '__main__': main() 修改这段代码

import cv2import numpy as npimport timefrom ultralytics import YOLO# 加载YOLO模型def load_yolo(model_path): yolo = YOLO(model_path) return yolo# 车辆检测def detect_vehicles(yolo, frame): classes, scores, boxes = yolo(frame) vehicles = [] for i in range(len(classes)): if classes[i] == 'car' or classes[i] == 'truck': vehicles.append(boxes[i]) return vehicles# 时速估计def estimate_speed(prev_frame, curr_frame, vehicles): speed = [] for vehicle in vehicles: x1, y1, x2, y2 = vehicle prev_vehicle_roi = prev_frame[y1:y2, x1:x2] curr_vehicle_roi = curr_frame[y1:y2, x1:x2] prev_gray = cv2.cvtColor(prev_vehicle_roi, cv2.COLOR_BGR2GRAY) curr_gray = cv2.cvtColor(curr_vehicle_roi, cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0) flow_mean = np.mean(flow) speed.append(flow_mean * 30) # 假设每帧间隔为1/30秒 return speed# 绘制检测结果def draw_results(frame, vehicles, speeds): for i in range(len(vehicles)): x1, y1, x2, y2 = vehicles[i] cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, 'Vehicle ' + str(i+1) + ': ' + str(speeds[i]) + ' km/h', (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 主函数def main(): # 加载YOLO模型 yolo = load_yolo("yolov8n.pt") # 打开视频或摄像头 cap = cv2.VideoCapture(0) # 如果要打开视频,请将0改为视频文件的路径 # 初始化 prev_frame = None while True: # 读取当前帧 ret, frame = cap.read() if not ret: break # 车辆检测 vehicles = detect_vehicles(yolo, frame) # 时速估计 if prev_frame is not None: speeds = estimate_speed(prev_frame, frame, vehicles) else: speeds = [0] * len(vehicles) # 绘制检测结果 draw_results(frame, vehicles, speeds) # 显示检测结果 cv2.imshow('Vehicle Detection', frame) # 保存检测结果 cv2.imwrite('result.jpg', frame) # 按下q键退出 if cv2.waitKey(1) == ord('q'): break # 更新上一帧 prev_frame = frame.copy() # 释放资源 cap.release() cv2.destroyAllWindows()if __name__ == '__main__': main()整理好代码

import json import base64 from PIL import Image import io import cv2 import numpy as np from ultralytics import YOLO import supervision as sv def init_context(context): context.logger.info("Init context... 0%") model_path = "yolov8m-seg.pt" # YOLOV8模型放在nuclio目录下构建 model = YOLO(model_path) # Read the DL model context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run yolo-v8-seg model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] masks = detections.xy conf = detections.confidence class_ids = detections.class_id results = [] if masks.shape[0] > 0: for label, score, mask in zip(class_ids, conf, masks): # 将mask转换为轮廓 contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: points = [] for point in contour: x = point[0][0] y = point[0][1] points.append([x, y]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": points, "type": "polygon",}) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)不用supervision 包 用别的方式解析

最新推荐

recommend-type

Dijkstra算法的详细介绍

dijkstra算法
recommend-type

Matlab通信原理-QPSK数字通信系统的仿真

信源为随机产生的0/1序列; 8倍过采样;画出发送序列时域波形和频谱。 进行根升余弦成型滤波,画出滤波后的时域波形及频谱图。 信道加入高斯白噪声:接收端匹配滤波,下采样后判决。画出接收端各处的时域波形和频谱。 改变信号和噪声功率的相对大小,观察并分析误码率的变化。画出误码率随信噪比变化的曲线。 详见:https://mp.weixin.qq.com/s/v91q-ruSoYmBVeqtis34tw
recommend-type

搜索引擎 PHP源码 免费开源

搜索引擎开源 易搜是一个性能极佳的搜索引擎,免费开源 易搜采用自主研发的 BiuSQL 数据库储存数据,不需要安装数据库,下载源码解压缩即可使用 项目文件结构 > ./css -文件夹-储存CSS渲染资源<br> ./help -文件夹-易搜的使用帮助和申明事件<br> ./img -文件夹-用来储存易搜图片文件<br> ./js -文件夹-储存JavaScript脚本资源<br> ./s -文件夹-易搜搜索功能核心算法<br> ./console -文件夹-易搜控制台<br> ./备份 -文件夹-易搜开发以及版本备份储存<br> ./index.php -文件-易搜首页初始化文件<br> ./verification.html -文件-易搜验证以及防攻击文件<br> ./项目结构 -文件-项目结构文件<br>
recommend-type

机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip

机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 机器学习作业基于 Python 的历史照片EXIF元数据 GIS机器学习分析源码+项目说明.zip 适用目标:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依