unknown_image = face_recognition.load_image_file('images/yml.png')
时间: 2023-09-21 19:05:51 浏览: 104
### 回答1:
这是一个关于 Python 编程的问题,我可以回答。这段代码是用 face_recognition 库加载一张图片,图片路径为 'images/yml.png',并将其存储在变量 unknown_image 中。
### 回答2:
这行代码的作用是将名为'yml.png'的图像文件加载到变量unknown_image中。它使用face_recognition库的load_image_file函数来完成,该函数接受图像文件路径作为参数并返回一个表示图像的数组。在这种情况下,'yml.png'是待处理的图像文件名,并且路径需要与代码文件所在的目录相对或绝对地一致。
加载后,unknown_image可以在后续的代码中使用,进行人脸识别或者其他图像处理的任务。根据具体需求,可能需要使用其他函数和方法来解析unknown_image中的信息、处理人脸数据或提取特征等等。总的来说,这行代码为进一步处理'images/yml.png'图像文件提供了一个方便的开始点。
### 回答3:
这段代码是使用face_recognition库中的load_image_file函数来加载一张图片。在这里,'images/yml.png'是待加载的图片文件的路径。函数会返回一个表示加载成功的图片的矩阵,该矩阵可以用于后续的人脸识别任务。需要注意的是,如果指定的图片路径是无效的或者无法加载图片,那么函数可能会抛出错误或者返回一个空值。
相关问题
import face_recognition import cv2 def compareFaces(known_image, name): known_face_encoding = face_recognition.face_encodings(known_image)[0] for i in range(len(face_locations)): # face_Locations的长度就代表有多少张脸 top1, right1, bottom1, left1 = face_locations[i] face_image = unknown_image[top1:bottom1, left1:right1] face_encoding = face_recognition.face_encodings(face_image) if face_encoding: result = {} matches = face_recognition.compare_faces([unknown_face_encodings[i]], known_face_encoding, tolerance=0.39) if True in matches: print('在未知图片中找到了已知面孔') result['face_encoding'] = face_encoding result['is_view'] = True result['location'] = face_locations[i] result['face_id'] = i + 1 result['face_name'] = name results.append(result) if result['is_view']: print('已知面孔匹配照片上的第{}张脸!!'.format(result['face_id'])) unknown_image = face_recognition.load_image_file('qt.jpg') known_image1 = face_recognition.load_image_file('cs.png') known_image2 = face_recognition.load_image_file('cs1.png') results = [] unknown_face_encodings = face_recognition.face_encodings(unknown_image) face_locations = face_recognition.face_locations(unknown_image) compareFaces(known_image1, 'cs') compareFaces(known_image2, 'cs1') view_faces = [i for i in results if i['is_view']] if len(view_faces) > 0: for view_face in view_faces: top, right, bottom, left = view_face['location'] start = (left, top) end = (right, bottom) cv2.rectangle(unknown_image, start, end, (0, 0, 255), thickness=2) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(unknown_image, view_face['face_name'], (left + 6, bottom + 16), font, 1.0, (255, 255, 255), thickness=1) cv2.imshow('windows', unknown_image) cv2.waitKey()
这段代码看起来是使用了 face_recognition 和 cv2 库来进行人脸比对和标记。它加载了一个未知的图片和两个已知的图片,然后通过 face_recognition 库提取出人脸的编码和位置。接着使用 compareFaces 函数来比对已知图片中的人脸和未知图片中的人脸,并将匹配结果保存在 results 列表中。最后,将匹配到的人脸在未知图片上用矩形框和文字标记出来,并显示在窗口中。
需要注意的是,这段代码中的路径和文件名是固定的,你可能需要根据实际情况修改。另外,由于我是文本 AI,并不能直接运行和显示图片,所以你需要在合适的环境中运行这段代码。
import cv2 import face_recognition import numpy as np from PIL import Image, ImageDraw,ImageFont video_capture = cv2.VideoCapture(r'C:/Users/ALIENWARE/123.mp4')#如果输入是(0)为摄像头输入 #现输入为MP4进行识别检测人脸 first_image = face_recognition.load_image_file("1.jpg") first_face_encoding = face_recognition.face_encodings(first_image)[0] Second_image = face_recognition.load_image_file("2.jpg") Second_face_encoding = face_recognition.face_encodings(Second_image)[0] third_image = face_recognition.load_image_file("3.jpg") third_face_encoding = face_recognition.face_encodings(third_image)[0] inside_face_encodings = [first_face_encoding,Second_face_encoding,third_face_encoding] inside_face_names = ['A','B','C'] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(inside_face_encodings, face_encoding) name = '未录入人脸' if True in matches: first_match_index = matches.index(True) name = inside_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) img_pil = Image.fromarray(frame) draw = ImageDraw.Draw(img_pil) fontStyle = ImageFont.truetype("C:/Windows/Fonts/simsun.ttc", 32, encoding="utf-8") draw.text((left + 6, bottom - 6), name, (0, 200, 0), font=fontStyle) frame = np.asarray(np.array(img_pil)) cv2.imshow('face_out', frame) if cv2.waitKey(1) & 0xFF == ord('q'): #退出需要按下Q键否则内核会崩溃 break video_capture.release() cv2.destroyAllWindows()
以下是修改后的代码,主要是添加了注释和一些规范化的修改:
```python
import cv2
import face_recognition
import numpy as np
from PIL import Image, ImageDraw, ImageFont
# 加载要识别的人脸图片
first_image = face_recognition.load_image_file("1.jpg")
first_face_encoding = face_recognition.face_encodings(first_image)[0]
Second_image = face_recognition.load_image_file("2.jpg")
Second_face_encoding = face_recognition.face_encodings(Second_image)[0]
third_image = face_recognition.load_image_file("3.jpg")
third_face_encoding = face_recognition.face_encodings(third_image)[0]
# 存储要检测的人脸编码及对应的人名
inside_face_encodings = [first_face_encoding, Second_face_encoding, third_face_encoding]
inside_face_names = ['A', 'B', 'C']
# 打开视频流
video_capture = cv2.VideoCapture(r'C:/Users/ALIENWARE/123.mp4')
# 循环读取视频帧
while True:
# 读取一帧
ret, frame = video_capture.read()
# 降低帧率,加快处理速度
if not ret:
break
# 缩小图片尺寸,加快处理速度
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
# 处理每一帧图片
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
# 遍历每个检测到的人脸
for face_encoding in face_encodings:
# 比对人脸编码
matches = face_recognition.compare_faces(inside_face_encodings, face_encoding)
name = '未录入人脸'
# 找到匹配的人脸
if True in matches:
first_match_index = matches.index(True)
name = inside_face_names[first_match_index]
face_names.append(name)
# 在画面上标记人脸及名字
for (top, right, bottom, left), name in zip(face_locations, face_names):
# 将坐标放大4倍,因为之前缩小了4倍
top *= 4
right *= 4
bottom *= 4
left *= 4
# 画出人脸框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 添加名字
img_pil = Image.fromarray(frame)
draw = ImageDraw.Draw(img_pil)
fontStyle = ImageFont.truetype("C:/Windows/Fonts/simsun.ttc", 32, encoding="utf-8")
draw.text((left + 6, bottom - 6), name, (0, 200, 0), font=fontStyle)
frame = np.asarray(np.array(img_pil))
# 显示画面
cv2.imshow('face_out', frame)
# 按下q键退出程序
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频流
video_capture.release()
# 关闭所有窗口
cv2.destroyAllWindows()
```
阅读全文