深度学习代码进行判断两张图片的相似性
时间: 2023-12-16 13:05:31 浏览: 126
以下是基于Siamese网络的深度学习代码,用于判断两张图片的相似性:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Flatten, Dense, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam
import numpy as np
def euclidean_distance(vectors):
v1, v2 = vectors
sum_square = K.sum(K.square(v1 - v2), axis=1, keepdims=True)
return K.sqrt(K.maximum(sum_square, K.epsilon()))
def create_base_network(input_shape):
input = Input(shape=input_shape)
x = Conv2D(32, (3, 3), activation='relu')(input)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = Conv2D(128, (3, 3), activation='relu')(x)
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dense(128, activation='relu')(x)
model = Model(input, x)
return model
def create_siamese_network(input_shape):
input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)
base_network = create_base_network(input_shape)
processed_a = base_network(input_a)
processed_b = base_network(input_b)
distance = Lambda(euclidean_distance)([processed_a, processed_b])
model = Model([input_a, input_b], distance)
return model
# 构建训练数据
def create_pairs(x, digit_indices):
pairs = []
labels = []
n = min([len(digit_indices[d]) for d in range(10)]) - 1
for d in range(10):
for i in range(n):
z1, z2 = digit_indices[d][i], digit_indices[d][i + 1]
pairs += [[x[z1], x[z2]]]
inc = np.random.randint(1, 10)
dn = (d + inc) % 10
z1, z2 = digit_indices[d][i], digit_indices[dn][i]
pairs += [[x[z1], x[z2]]]
labels += [1, 0]
return np.array(pairs), np.array(labels)
# 训练模型
def train_model():
input_shape = (28, 28, 1)
model = create_siamese_network(input_shape)
optimizer = Adam(lr=0.00006)
model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=['accuracy'])
# 构建训练数据
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.expand_dims(x_train, axis=-1)
x_test = np.expand_dims(x_test, axis=-1)
digit_indices = [np.where(y_train == i)[0] for i in range(10)]
train_pairs, train_y = create_pairs(x_train, digit_indices)
# 训练模型
model.fit([train_pairs[:, 0], train_pairs[:, 1]], train_y,
batch_size=128,
epochs=20,
validation_split=0.2)
return model
# 测试模型
def test_model(model):
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.expand_dims(x_train, axis=-1)
x_test = np.expand_dims(x_test, axis=-1)
digit_indices = [np.where(y_train == i)[0] for i in range(10)]
test_pairs, test_y = create_pairs(x_test, digit_indices)
loss, acc = model.evaluate([test_pairs[:, 0], test_pairs[:, 1]], test_y)
print("Test accuracy: {:.2f}%".format(acc * 100))
model = train_model()
test_model(model)
```
这段代码使用了MNIST数据集,构建了一个Siamese网络,训练数据包含相似图片和不相似图片,通过最小化相似图片之间的距离和不相似图片之间的距离,来训练模型。测试数据同样是相似图片和不相似图片,用来测试模型的准确率。
阅读全文