qi无线充电标准中文版

时间: 2023-05-14 22:03:39 浏览: 66
Qi无线充电标准是一种由Wireless Power Consortium(WPC)推出的全球通用无线充电标准。该标准是在电磁感应的基础上,采用高频振荡技术,将电能传输到充电设备中。Qi无线充电标准已成为智能手机、平板电脑、手表、耳机等智能电子产品的主流充电方式之一。 Qi无线充电标准的设计理念是便利、互操作性和安全。使用Qi标准进行充电不需要将设备插入电源,只需将设备放置在充电器上即可充电,充电效率高,充电速度也比较快。不同制造商的设备可以相互兼容,无需担心设备不能充电的问题。此外,Qi无线充电器还能够实现对设备进行安全管理,确保设备不会出现过热、过充等安全问题。 目前,Qi无线充电标准已经得到了广泛应用,包括无线充电板、无线充电台、汽车无线充电器以及嵌入式无线充电模块等。随着无线充电技术的不断发展,未来Qi无线充电标准还将应用于更多的智能电子产品中,如无人机、智能家居等。
相关问题

stm32 qi无线充电

STM32 QI无线充电是一种基于STM32系列芯片和QI无线充电技术的无线充电方案。QI是一种无线充电标准,它使用电磁感应原理实现无线充电。 STM32 QI无线充电方案采用了高集成度的STM32芯片作为控制器,利用其强大的处理能力和丰富的外设接口来实现无线充电功能。通过与QI无线充电芯片和相应的外围电路的配合,实现了电能的无线传输和接收。 在STM32 QI无线充电方案中,STM32芯片负责控制充电电流和电压等参数,以适应不同设备的充电需求。同时,它还可以监测充电状态,实现电池的智能管理,保护电池的安全性和寿命。 STM32 QI无线充电方案具有高效、安全、便捷等特点。它可以方便地实现电池的无线充电,避免了传统充电器线缆的限制和损坏问题。同时,该方案还兼容QI无线充电标准,可以与现有的QI充电设备无缝衔接。 总而言之,STM32 QI无线充电是一种利用STM32芯片和QI无线充电技术实现的无线充电方案,具有高效、安全、便捷等特点,可以为用户提供更便捷的充电体验。

qi 无线充电ask

无线充电是一种通过将电能传输到设备而不需要使用传统电线或充电器的技术。Qi是无线充电的一种标准。它是由Wireless Power Consortium(WPC)制定的,以确保不同品牌和设备之间的兼容性。 Qi无线充电技术基于感应原理。它使用一个由发送器和接收器组成的系统。发送器通过电磁感应产生一个电磁场,接收器则将这个电磁场转化为电能供设备充电。 使用Qi无线充电有许多好处。首先,它消除了传统电线和充电器的需求,简化了充电的过程。只需将设备放在充电垫上,就可以自动开始充电,方便快捷。其次,Qi无线充电可以同时为多个设备提供充电,而不需要多个充电器。这样可以减少电线混乱的问题,并节省空间。此外,Qi无线充电还可以减少电线的磨损和损坏的风险。 越来越多的设备和品牌支持Qi无线充电技术。实际上,许多智能手机、智能手表和其他电子设备都内置了Qi接收器。只要设备支持Qi标准,就可以使用任何兼容的Qi充电设备进行无线充电。 总而言之,Qi无线充电是一种方便、快捷和可靠的充电技术。它消除了传统电线充电的烦恼,并为多个设备提供了便捷的充电解决方案。随着越来越多的设备支持Qi技术,无线充电将成为未来充电的主流方式。

相关推荐

要实现Qi无线充电,可以使用STM32微控制器来实现。首先,需要使用STM32开发板和相应的无线充电器模块。 在硬件方面,可以将无线充电器模块连接到STM32开发板上的相应引脚。这些引脚包括功率传输控制(PTC)引脚,外部事件中断(EXTI)引脚和定时器/计数器引脚等。通过正确的连接和配置,可以使STM32与无线充电模块进行通信和数据传输。 接下来,在软件方面,可以使用STM32Cube软件进行开发。首先,需要配置STM32开发板上的GPIO引脚和外部中断。通过编写相应的代码,可以使STM32能够响应无线充电器模块的事件和命令。 其次,可以使用STM32的定时器/计数器功能来测量无线充电器模块传输功率的变化。通过对传输功率进行监测和控制,可以实现无线充电的效果。 此外,还可以利用STM32的串口通信和I2C总线等功能,与无线充电器模块进行数据交换和通信。通过编写相应的驱动程序和通信协议,可以实现STM32与无线充电器模块之间的数据传输和控制。 在整个开发过程中,需要仔细阅读STM32的相关文档和手册,以了解具体的配置和编程方法。同时,还需要进行实际测试和调试,以确保无线充电模块与STM32的正常工作和稳定性。 总之,通过合理的硬件连接和软件开发,可以使用STM32实现Qi无线充电功能。这将为人们的移动设备带来更加便捷和高效的充电方式。
### 回答1: 基于stm32的无线充电器设计,是一种基于微控制器技术和无线充电技术的产品设计。 首先,stm32是一款强大的微控制器芯片,其具有高性能、低功耗、易于编程等优点。在设计无线充电器时,可以利用stm32芯片实现充电器的控制和管理。通过编程设置充电参数,实现充电器的智能化控制,提高充电效率和安全性。 其次,无线充电技术是一种新兴的充电方式,其可以通过电磁感应、磁共振等方式实现无线充电。相对于传统有线充电,其具有充电效率高、充电安全、免去线缆等优点。在设计无线充电器时,可以采用无线充电技术,实现无线充电功能。 总之,基于stm32的无线充电器设计,将充分利用微控制器和无线充电技术的优点,实现充电器的高效、安全、智能化。未来,随着无线充电技术的不断发展和普及,基于stm32的无线充电器将会成为一种趋势。 ### 回答2: 基于STM32的无线充电器设计,首先需要选择合适的无线充电方案,一般常用的有Qi标准和PMA标准两种。其中,Qi标准采用磁共振技术,可以在充电器和充电设备之间进行磁场能量传输,这种方案兼容性好、安全可靠,因此在实际应用中广泛使用。 在选择好无线充电方案后,需要根据具体需求选用相应的STM32系列芯片,以实现控制和管理无线充电过程中的各个环节,如功率调节、保护机制等。同时还需配合适当的驱动电路、充电回路等相关电路模块,以实现无线充电器的稳定、高效运行。 在充电器外壳设计方面,还需考虑适当的外观设计和用户操作便捷性,如充电器的尺寸、材质、指示灯等等设计。同时还需考虑到充电器的安全性和耐用性,如防护措施、防静电措施等等。 总之,基于STM32的无线充电器设计需要综合考虑各个方面的需求,采用相应的硬件和软件技术控制和管理无线充电过程,为用户提供一个稳定、高效、安全、易用的无线充电解决方案。 ### 回答3: 基于STM32无线充电器设计是一个非常有前景和实用价值的方向。无线充电技术是近年来逐渐成熟的技术,在家庭、办公、商业等领域得到了广泛的应用。 STM32系列单片机具有高性能、低功耗、丰富的外设和完善的开发工具链等优点,非常适合应用于无线充电器的设计中。在无线充电器的设计中,可以使用STM32系列单片机来实现电源管理、电流控制、通信控制、充电状态监测等功能。 在无线充电器的设计中,需要考虑电磁兼容性、电源管理、安全性等问题。首先,应该通过EMC测试确保无线充电器的电磁兼容性。其次,应该采用恰当的电源管理方案确保无线充电器的可靠性和寿命。最重要的是,在无线充电器的设计中,必须注意安全性问题,避免电气触及或电击等危险。 在无线充电器的具体实现中,可以采用磁共振原理或电磁感应原理。对于磁共振原理,可以使用STM32系列单片机来控制功率和频率,以实现高效充电。对于电磁感应原理,可以采用STM32系列单片机来实现充电状态的监测和控制。 综上所述,基于STM32无线充电器设计是一个高效、实用、有前景的设计方向,可以广泛应用于生活、办公、商业等领域,为人们提供更加便捷、安全、高效的充电体验。
### 回答1: 基于STM32的无线充电小车控制系统的设计需要考虑以下几个方面: 1. 电路设计:选择适当的元器件和连接方式来保证电路可靠运行。 2. 程序设计:编写程序以控制小车的电机,实现遥控功能,并实现无线充电。 3. 无线充电技术:选择合适的无线充电技术,如Qi、PMA等,并在电路中实现。 4. 外设的选择:根据需要,选择适当的传感器和执行器,实现更多功能。 最终的设计需要考虑电路可靠性、程序可维护性、成本效益等多方面因素。 ### 回答2: STM32无线充电小车控制系统的设计是一项基于现代电子技术进行的高新技术发展项目。该项目的设计理念是基于STM32微控制器,利用其高速处理良好的性能,控制无线充电小车的移动和充电等功能。该控制系统的主要部分包括微控制器、电机驱动器、传感器、无线充电板等。 该控制系统的设计首先需要进行硬件设计。在硬件设计中,需要根据实际需求,选择合适的STM32型号,并添加所需要的其他器件,如电机驱动器、传感器、无线充电板等。如电机需要的驱动器,需要承受一定电流,同时可以通过微控制器的PWM输出来调节电机的速度,实现小车的行驶动作。传感器则可以通过传感器接口连接到MICRO$T, 带引脚,它可以帮助检测周围的环境,如障碍物、墙壁等。而无线充电板则需要嵌入到小车底部,以便为小车提供无线充电服务。 其次,该控制系统需要进行软件设计。在软件设计中,需要对STM32微控制器进行编程,设置相应的控制算法。为了实现小车自动运行的功能,需要对软件进行编写,实现自动识别障碍物等功能。此外,为了防止电池的过放和短路,还需要进行一定的保护措施。 总之,基于STM32无线充电小车控制系统的设计是一项十分令人期待和充满挑战的任务。该系统在实现小车的行驶和充电等功能的同时,还可以实现对小车的自动控制,为人们的生活和工作带来了极大的便利。因此,该控制系统的设计既需要有广泛的电子技术知识,同时还需要具备创新和应用发展能力,这为不断推动现代电子科技的发展提供了强有力的支持。 ### 回答3: 基于STM32无线充电小车控制系统是一种新型的控制系统,主要应用于小车和其他小型运动设备的控制。它采用STM32芯片作为主控制芯片,通过智能无线充电技术实现电池无线充电,实现了控制系统的高效率和便捷性。 控制器的开发主要包括硬件和软件两个方面。硬件部分需要使用基于STM32微控制器的电路板,该电路板必须包括电池、电机驱动及无线充电电路等关键元件。软件部分主要包括控制算法和程序代码的编写,这些算法主要用于控制车辆的移动、转弯、避障和停止等动作,而程序代码则需要通过无线通信传输到车辆上,实现控制。 无线充电技术是该控制系统的核心技术,其研发和应用需要从电磁学、物理学和电子学等多个方面进行探索和研究。主要使用了磁共振耦合技术和电容耦合技术,其原理是通过电磁场或电场的相互作用,在不接触电池的情况下,实现电池的充电。 在实际应用中,该控制系统可以应用于智能家居,智能车库等场景,实现家庭和办公环境的智能化。例如在智能车库中,使用该控制系统可以实现车辆停车、移动和控制等功能,同时还可以为车辆进行无线充电,实现全方位的服务,并提高车库的利用效率。 总之,基于STM32无线充电小车控制系统是一项高科技控制系统,其应用前景广阔,可以为人们提供更加便利的生活和工作。
### 回答1: cree_wlfspd_ads_v12p0是指CREE的无线电频谱分析仪软件版本号为12.0。该软件是用于分析和监测无线电频谱的工具,可以帮助用户检测、识别、分类和记录频谱中的无线电信号。该版本的软件可能有一些更新和改进,使其更加有效、准确和可靠。它可以通过与CREE的无线电频谱分析仪硬件配合使用,提供更广泛的频率覆盖范围和更高的灵敏度。它可以帮助用户在无线电频谱中寻找和排除无效信号,提高有用信号的检测和分析效率。该软件也适用于电子工程师、通信工程师和频谱监测人员等行业。它可以用于无线电频谱管理和监测、无线电信号测量和分析、频谱分析和监测等领域。 ### 回答2: cree_wlfspd_ads_v12p0是指Cree零件制造公司推出的一款广告显示器件版本12.0。该显示器件具有高清晰度、高亮度、低功耗等特点,在广告牌、室内外广告屏幕等领域得到广泛应用。 该款显示器件采用Cree公司独有的SiC材料制造,具有非常高的发光效率和热稳定性,可在极端环境下正常工作。其高密度像素和高色彩还原度能够呈现丰富的色彩和高质量的图像。 此外,cree_wlfspd_ads_v12p0还支持智能节能功能,通过感应环境光线、调整背光亮度等技术来实现节能降耗。同时,该设备采用的防水、防尘设计也能保证其在恶劣环境中的正常使用。 总之,cree_wlfspd_ads_v12p0是一款先进的广告显示器件,为广告行业带来了更高品质、更低耗能、更稳定的显示效果。 ### 回答3: cree_wlfspd_ads_v12p0是指Cree的Wireless Fast Pad Adaptive Device System(WLFSPD ADS)版本12.0。它是一种无线快速充电系统,可为智能手机和其他移动设备提供快速、方便的充电体验。 WLFSPD ADS技术采用Cree的GaN (氮化镓)电源器件,具有高电流密度和高开关速度,可实现快速、高效的功率传输。此系统支持Qi标准,可与所有兼容Qi的设备配对使用。 版本12.0的更新加强了系统的防过流、过压和过温保护措施,提高了系统的安全性和可靠性。此外,该版本还优化了无线充电器的设计,使其更加便携和易于使用。 总的来说,cree_wlfspd_ads_v12p0是Cree科技公司为满足消费者对快速、便捷充电的需求而开发的一款无线充电系统,具有高效、安全、易用的特点,是现代智能手机和移动设备用户必不可少的充电利器之一。
pdf
3GPP TS 23.501 V16.1.0(2019-06 年)5G 系统的系统架构; 第二阶段 (版本 16) 目录 前言 15 1 范围 16 2 参考文献 16 3 定义和缩写 20 3.1 定义 20 3.2 缩写 24 4 架构(architecture)模型和概念 26 4.1 一般概念 26 4.2 架构参考模型 27 4.2.1 概述 27 4.2.2 网络功能和实体 27 4.2.3 非漫游参考架构 28 4.2.4 漫游参考架构 31 4.2.5 数据存储架构 35 3gpp 公司 邮政地址 3GPP 支持办公室地址 650 路德卢西亚-索菲亚-安提波利斯 Valbonne-法国 电话:+33 4 92 94 42 00 传真:+33 4 93 65 47 16 互联网 网址:http://www.3gpp.org 版权通知 未经书面许可,不得复制任何部分。版权和上述限制适用于所有媒体的复制。 ?2019,3GPP 组织合作伙伴(ARIB、ATIS、CCSA、ETSI、TSDSI、TTA、TTC)。 版权所有。 UMTS™是为其成员利益注册的 ETSI 商标。 3GPP™是为其成员利益注册的 ETSI 商标,3GPP 组织合作伙伴的商标;LTE™是为其成员和 3GPP 组织合作伙 伴利益注册的 ETSI 商标。 GSM®和 GSM 标志由 GSM 协会注册并拥有。 3GPP 错误!文档中没有指定样式的文字。 3 3GPP TS 23.501 V16.1.0(2019-06 年) 4.2.5a 无线电能力信号优化 36 4.2.6 基于服务的接口 37 4.2.7 参考点 38 4.2.8 支持非 3gpp 接入 39 4.2.8.0 概述 39 4.2.8.1 支持受信任和不受信任的非 3gpp 访问的一般概念 40 4.2.8.1 支持电缆接入的一般概念 41 4.2.8.2 可信和不可信非 3gpp 访问的体系结构参考模型 42 4.2.8.2.1 非漫游架构 42 4.2.8.2.2 LBO 漫游架构 43 4.2.8.2.3 家庭路由漫游架构 45 4.2.8.3 受信任和不受信任的非 3gpp 访问的参考点 47 4.2.8.3.1 概述 47 4.2.8.3.2 对 TA 48 的要求 4.2.8.4 有线接入网体系结构参考模型 48 4.2.8.5 从不支持 5GC NAS 的设备通过 WLAN 访问 5GC 49 4.2.8.5.1 概述 49 4.2.8.5.2 参考架构 49 4.2.8.5.3 网络功能 50 4.2.8.5.4 参考点 50 4.2.9 网络分析架构 50 4.2.10 ATSSS 支持的架构参考模型 51 4.3 与 EPC 的互通 52 4.3.1 非漫游架构 52 4.3.2 漫游架构 53 4.3.3 5GC 通过非 3GPP 接入与 E-UTRAN 连接到 EPC 55 之间的互通 4.3.3.1 非漫游架构 55 4.3.3.2 漫游架构 56 4.3.4 与 EPC 连接的 EPDG 与 5GS 的互通 58 4.3.4.1 非漫游架构 58 4.3.4.2 漫游架构 59 4.3.5 互通场景中的服务暴露 61 4.3.5.1 非漫游架构 61 4.3.5.2 漫游架构 62 4.4 特定服务 63 4.4.1 公共报警系统 63 4.4.2 NAS 上的 SMS 63 4.4.2.1 通过 NAS 支持 SMS 的体系结构 63 4.4.2.2 支持 NAS 65 上的 SMS 的参考点 4.4.2.3 基于服务的接口,支持 NAS 65 上的 SMS 4.4.3 国际监测系统支持 65 4.4.4 定位服务 65 4.4.4.1 支持定位服务的体系结构 65 4.4.4.2 支持定位服务的参考点 65 4.4.4.3 支持位置服务的基于服务的接口 65 4.4.5 应用程序触发服务 66 4.4.6 5G LAN 型服务 66 4.4.6.1 支持 5G LAN 类型服务的用户平面结构 66 4.4.6.2 支持 5G LAN 类型服务的参考点 66 4.4.7 msisdn-less-mo-sms 服务 66 4.4.8 时间敏感通信 67 4.4.8.1 概述 67 3GPP 错误!文档中没有指定样式的文字。 4 3GPP TS 23.501 V16.1.0(2019-06 年) 4.4.8.2 支持时间敏感通信的体系结构 67 5 高级功能 68 5.1 概述 68 5.2 网络访问控制 68 5.2.1 概述 68 5.2.2 网络选择 68 5.2.3 识别和认证 69 5.2.4 授权 69 5.2.5 访问控制和限制 69 5.2.6 政策控制 70 5.2.7 合法拦截 70 5.3 注册和连接管理 70 5.3.1 概述 70 5.3.2 登记管理 70 5.3.2.1 概述 70 5.3.2.2 5GS 注册管理状态 70 5.3.2.2.1 概述 70 5.3.2.2.2 RM-注销状态 70 5.3.2.2.3 RM 注册国 71 5.3.2.2.4 5GS 注册管理状态模型 71 5.3.2.3 登记区管理 72 5.3.2.4 支持在 3gpp 和非 3gpp 访问上注册的 UE 72 5.3.3 连接管理 74 5.3.3.1 概述 74 5.3.3.2 5GS 连接管理状态 74 5.3.3.2.1 概述 74 5.3.3.2.2 CM-空闲状态 74 5.3.3.2.3 CM-连接状态 75 5.3.3.2.4 5GS 连接管理状态模型 76 5.3.3.2.5 cm-连接 RRC 非活动状态 76 5.3.3.3 NAS 信号连接管理 78 5.3.3.3.1 概述 78 5.3.3.3.2 NAS 信号连接建立 78 5.3.3.3.3 NAS 信号连接释放 78 5.3.3.4 支持通过 3gpp 和非 3gpp 访问连接的 UE 79 5.3.4 UE 移动性 79 5.3.4.1 流动限制 79 5.3.4.1.1 概述 79 5.3.4.1.2 服务区域限制管理 80 5.3.4.2 机动性模式 82 5.3.4.3 无线电资源管理功能 82 5.3.4.4 UE 移动事件通知 82 5.4 3GPP 访问特定方面 83 5.4.1 在 CM-IDLE 中的 UE 可达性 83 5.4.1.1 概述 83 5.4.1.2 当 UE 为 CM-IDLE 时,允许移动端接数据的 UE 可达性 84 5.4.1.3 仅移动启动连接(MICO)模式 84 5.4.2 在 CM-CONNECTED 中的 UE 可达性 85 5.4.3 寻呼策略处理 86 5.4.3.1 概述 86 5.4.3.2 寻呼策略差异 86 5.4.3.3 寻呼优先级 87 3GPP 错误!文档中没有指定样式的文字。 5 3GPP TS 23.501 V16.1.0(2019-06 年) 5.4.4 UE 无线电能力处理 87 5.4.4.1 在 AMF 87 中的 UE 无线电能力信息存储 5.4.4.1A UE 无线电能力信号优化(RACS)88 5.4.4.2 无效 89 5.4.4.2A UE 无线电能力匹配请求 89 5.4.4.3 寻呼辅助信息 90 5.4.4aue-mm 核心网络能力处理 90 5.4.4b UE 5GSM 核心网络能力处理 91 5.4.5 DRX(不连续接收)框架 91 5.4.6 运行优化的核心网络协助信息 91 5.4.6.1 概述 91 5.4.6.2 核心网络辅助运行参数调整 92 5.4.6.3 核心网络辅助运行寻呼信息 93 5.4.7 NG-RAN 位置报告 93 5.5 非 3gpp 访问特定方面 93 5.5.0 概述 93 5.5.1 登记管理 93 5.5.2 连接管理 94 5.5.3 可用性 95 5.5.3.1 可访问性(cm-idle 95) 5.5.3.2 在 CM-Connected 95 中的 UE 可到达性 5.6 会议管理 96 5.6.1 概述 96 5.6.2 AMF 和 SMF 98 之间的相互作用 5.6.3 漫游 100 5.6.4 带有多个 PDU 会话锚定的单个 PDU 会话 101 5.6.4.1 概述 101 5.6.4.2 为 PDU 会话 101 使用 UL 分类器 5.6.4.3 为 PDU 会话 103 使用 IPv6 多归位 5.6.5 支持局域网 104 5.6.6 建立 PDU 会话期间由 DN-AAA 服务器进行的二级身份验证/授权 106 5.6.7 应用功能对交通路由的影响 108 5.6.7.1 概述 108 5.6.7.2 在与 AFS 113 协调的基础上加强上行路径管理 5.6.8 选择性激活和停用现有 PDU 会话的上行连接 114 5.6.9 会议和服务连续性 115 5.6.9.1 概述 115 5.6.9.2 SSC 模式 115 5.6.9.2.1 SSC 模式 1 115 5.6.9.2.2 SSC 模式 2 115 5.6.9.2.3 SSC 模式 3 116 5.6.9.3 SSC 模式选择 116 5.6.10 不同 PDU 会话类型的具体方面 117 5.6.10.1 IP PDU 会话类型 117 的支持 5.6.10.2 支持以太网 PDU 会话类型 117 5.6.10.3 支持非结构化 PDU 会话类型 119 5.6.11 SMF 在报告使用情况的利益领域存在 UE 119 5.6.12 网络实例的使用 121 5.6.13 始终在 PDU 会议 121 上 5.6.14 框架布线的支撑 121 5.7 QoS 模型 122 5.7.1 概述 122 3GPP 错误!文档中没有指定样式的文字。 6 3GPP TS 23.501 V16.1.0(2019-06 年) 5.7.1.1 QoS 流 122 5.7.1.2 QoS 配置文件 122 5.7.1.3 QoS 流的控制 123 5.7.1.4 QoS 规则 123 5.7.1.5 QoS 流映射 124 5.7.1.6 DL 流量 126 5.7.1.7 UL 流量 126 5.7.1.8 AMBR/MFBR 执行和费率限制 126 5.7.1.9 优先值 127 5.7.2 5G QoS 参数 127 5.7.2.1 5QI 127 5.7.2.2 ARP 127 5.7.2.3 RQA 128 5.7.2.4 通知控制 128 5.7.2.5 比特率 129 5.7.2.6 总比特率 129 5.7.2.7 默认值 129 5.7.2.8 最大丢包率 130 5.7.2.9 有线接入网络特定 5G QoS 参数 130 5.7.3 5G QoS 特性 130 5.7.3.1 概述 130 5.7.3.2 资源类型 131 5.7.3.3 优先级 131 5.7.3.4 包延迟预算 131 5.7.3.5 包错误率 132 5.7.3.6 平均窗口 132 5.7.3.7 最大数据突发量 132 5.7.4 标准化 5qi 到 qos 特征映射 133 5.7.5 反射 QoS 136 5.7.5.1 概述 136 5.7.5.2 UE 派生的 QoS 规则 136 5.7.5.3 反射 QoS 控制 137 5.7.6 分组滤波器组 138 5.7.6.1 概述 138 5.7.6.2 IP 包滤波器组 138 5.7.6.3 以太网分组滤波器组 139 5.8 用户平面管理 139 5.8.1 概述 139 5.8.2 功能描述 140 5.8.2.1 概述 140 5.8.2.2 UE IP 地址管理 140 5.8.2.2.1 概述 140 5.8.2.2.2 路由规则配置 142 5.8.2.2.3 无状态 IPv6 地址自动配置程序 142 5.8.2.3 CN 隧道信息管理 143 5.8.2.3.1 概述 143 5.8.2.3.2 SMF 143 中的 CN 隧道信息管理 5.8.2.3.3 UPF 143 中的 CN 隧道信息管理 5.8.2.4 交通检测 143 5.8.2.4.1 概述 143 5.8.2.4.2 交通检测信息 143 5.8.2.5 用户平面转发控制 144 5.8.2.6 充电和使用监控处理 145 3GPP 错误!文档中没有指定样式的文字。 7 3GPP TS 23.501 V16.1.0(2019-06 年) 5.8.2.6.1 概述 145 5.8.2.6.2 激活 UPF 146 中的使用报告 5.8.2.6.3 向 SMF 146 报告使用信息 5.8.2.7 PDU 会话和 QoS 流策略 147 5.8.2.8 PCC 相关功能 147 5.8.2.8.1 激活/停用预定义 PCC 规则 147 5.8.2.8.2 动态 PCC 规则的执行 147 5.8.2.8.3 重定向 148 5.8.2.8.4 支持 PFD 管理 148 5.8.2.9 发送“结束标记”功能 149 5.8.2.9.0 简介 149 5.8.2.9.1 UPF 构建“端标记”包 149 5.8.2.9.2 SMF 构建“端标记”包 149 5.8.2.10 上行隧道管理 149 5.8.2.11 N4 会话管理参数 150 5.8.2.11.1 概述 150 5.8.2.11.2 N4 会议背景 151 5.8.2.11.3 包检测规则 151 5.8.2.11.4 QoS 实施规则 152 5.8.2.11.5 使用报告规则 154 5.8.2.11.6 转发操作规则 156 5.8.2.11.7 UPF 158 生成的使用报告 5.8.2.11.8 多访问规则 159 5.8.2.12 报告 PDU 会话中使用的 UE MAC 地址 160 5.8.2.13 支持 5G VN 组通信 160 5.8.2.13.0 概述 160 5.8.2.13.1 支持 5G VN 161 的单播流量转发 5.8.2.13.2 支持 UE 移动性导致的单播流量转发更新 162 5.8.3 显式缓冲区管理 162 5.8.3.1 概述 162 5.8.3.2 UPF 162 的缓冲 5.8.3.3 SMF 163 处的缓冲 5.8.4 SMF 暂停充电 163 5.9 标识符 163 5.9.1 概述 163 5.9.2 订阅永久标识符 163 5.9.2A 订阅隐藏标识符 164 5.9.3 永久设备标识符 164 5.9.4 5G 全球唯一临时标识符 164 5.9.5 AMF 名称 165 5.9.6 数据网络名称(DNN)165 5.9.7 内部组标识符 165 5.9.8 通用公共订阅标识符 166 5.9.9 AMF UE NGAP 编号 166 5.9.10 UE 无线电能力 ID 166 5.10 安全方面 166 5.10.1 概述 166 5.10.2 非 3gpp 接入安全模型 167 5.10.2.1 信号安全 167 5.10.3 PDU 会话用户机安全 167 5.11 支持双重连接、多重连接 168 5.11.1 支持双重连接 168 3GPP 错误!文档中没有指定样式的文字。 8 3GPP TS 23.501 V16.1.0(2019-06 年) 5.12 充电 169 5.12.1 概述 169 5.12.2 二级大鼠使用数据报告 169 5.12.3 二级大鼠定期使用数据报告程序 170 5.13 支持边缘计算 170 5.14 政策控制 171 5.15 网络切片 171 5.15.1 概述 171 5.15.2 网络切片的识别和选择:S-NSSAI 和 NSSAI 172 5.15.2.1 概述 172 5.15.2.2 标准化 SST 值 173 5.15.3 订阅方面 173 5.15.4 UE NSSAI 配置和 NSSAI 存储方面 173 5.15.4.1 概述 173 5.15.4.1.1 UE 网片配置 173 5.15.4.1.2 将允许的 NSSAI 和请求的 NSSAI 中的 S-NSSAI 值映射到 HPLMN 175 中使用的 S-NSSAI 值 5.15.4.2 更新 UE 网片配置 176 5.15.5 详细操作概述 176 5.15.5.1 概述 176 5.15.5.2 选择支持网络切片的服务 AMF 176 5.15.5.2.1 注册到一组网络切片 176 5.15.5.2.2 为 UE 181 修改网络切片集 5.15.5.2.3 由于网络切片支持,AMF 重新分配 182 5.15.5.3 在网络切片中建立 PDU 会话 182 5.15.6 漫游网络切片支持 183 5.15.7 网络切片及与 EPS 的互通 184 5.15.7.1 概述 184 5.15.7.2 空闲模式方面 185 5.15.7.3 连接模式方面 185 5.15.8 PLMN 中网络切片可用性的配置 185 5.15.9 操作员控制的 NSSAI 纳入接入层连接设施 186 5.15.10 特定于网络切片的身份验证和授权 187 5.16 对特定服务的支持 188 5.16.1 公共报警系统 188 5.16.2 NAS 上的短信 188 5.16.2.1 概述 188 5.16.2.2 通过 NAS 传输的短信 188 5.16.3 国际监测系统支持 188 5.16.3.1 概述 188 5.16.3.2 通过 3gpp 访问支持的 IMS 语音转换 PS 会话指示 189 5.16.3.2A 通过非 3gpp 访问支持的 IMS 语音交换 PS 会话指示 189 5.16.3.3 同构支持 IMS 语音交换 PS 会话支持指示 190 5.16.3.4 P-CSCF 地址传递 190 5.16.3.5 UE 发起会话/呼叫的域选择 190 5.16.3.6 IMS 语音的终止域选择 191 5.16.3.7 UE 的使用设置 191 5.16.3.8 UE 发起 SMS 191 的域和访问选择 5.16.3.8.1 支持 IP 191 上的 SMS 的支持 IMS 的 UE 的 UE 发起 SMS 5.16.3.8.2 超过 NAS 的短消息访问选择 192 5.16.3.9 SMF 支持 P-CSCF 恢复程序 192 5.16.3.10 5GS 中通过 EPS 回退或 RAT 回退的 IMS 语音服务 192 5.16.3.11 P-CSCF 发现和选择 192 3GPP 错误!文档中没有指定样式的文字。 9 3GPP TS 23.501 V16.1.0(2019-06 年) 5.16.3.12 HSS 发现和选择 193 5.16.4 应急服务 193 5.16.4.1 简介 193 5.16.4.2 应急服务体系结构参考模型 195 5.16.4.3 应急服务的流动限制和准入限制 195 5.16.4.4 可达性管理 196 5.16.4.5 应急服务的 SMF 和 UPF 选择功能 196 5.16.4.6 应急服务的 QoS 196 5.16.4.7 应急服务 PCC 196 5.16.4.8 IP 地址分配 197 5.16.4.9 应急服务 PDU 会议的处理 197 5.16.4.9A 处理紧急登记 UES 正常服务的 PDU 会议 197 5.16.4.10 仅支持 eCall 模式 197 5.16.4.11 应急服务回退 198 5.16.5 多媒体优先服务 198 5.16.6 关键任务服务 199 5.17 互通与迁移 200 5.17.1 支持从 EPC 迁移到 5GC 200 5.17.1.1 概述 200 5.17.1.2 支持与 EPS 202 互通的用户平面管理 5.17.2 与 EPC 202 的互通 5.17.2.1 概述 202 5.17.2.2 与 N26 接口 204 的互通程序 5.17.2.2.1 概述 204 5.17.2.2.2 单注册模式下的 UES 移动性 205 5.17.2.3 无 N26 接口的互通程序 206 5.17.2.3.1 概述 206 5.17.2.3.2 单注册模式下的 UE 移动性 207 5.17.2.3.3 双重注册模式下的 UE 移动性 208 5.17.2.3.4 连接状态下的 UE 重定向 209 5.17.2.4 5GS 和 Geran/Utran 209 之间的机动性 5.17.3 在非 3GPP PDU 会议上与 EPC 进行互动 209 5.17.4 EPS 与 5GS 210 的网络共享支持与互通 5.17.5 互通场景中的服务暴露 210 5.17.5.1 概述 210 5.17.5.2 支持监控事件的互通 211 5.17.5.2.1 与 N26 接口 211 的互通 5.17.5.2.2 无 N26 接口的互通 211 5.17.6 互通场景中的服务暴露 211 5.17.6.1 服务 API 211 的可用性或预期级别 5.17.7 NG-RAN 和 E-UTRAN 之间的配置转移程序 212 5.17.7.1 NG-RAN 和 E-UTRAN 之间配置转换的架构原则 212 5.17.7.2 寻址、路由和中继 213 5.17.7.2.1 寻址 213 5.17.7.2.2 路线 213 5.17.7.2.3 继电保护 213 5.18 网络共享 213 5.18.1 一般概念 213 5.18.2 网络共享广播系统信息 214 5.18.2A 网络共享的 PLMN 列表处理 214 5.18.3 UE 的网络选择 215 5.18.4 网络选择 215 3GPP 错误!文档中没有指定样式的文字。 10 3GPP TS 23.501 V16.1.0(2019-06 年) 5.18.5 网络共享和网络切片 215 5.19 控制平面负荷控制、拥塞和过载控制 216 5.19.1 概述 216 5.19.2 TNLA 负载平衡和 TNLA 负载重新平衡 216 5.19.3 AMF 负载平衡 216 5.19.4 AMF 负载重新平衡 216 5.19.5 AMF 过载控制 217 5.19.5.1 概述 217 5.19.5.2 AMF 过载控制 217 5.19.6 SMF 过载控制 218 5.19.7 NAS 级拥塞控制 218 5.19.7.1 概述 218 5.19.7.2 一般 NAS 级拥塞控制 218 5.19.7.3 基于 DNN 的拥塞控制 220 5.19.7.4 基于 S-NSSAI 的拥塞控制 221 5.19.7.5 特定于组的 NAS 级别拥塞控制 222 5.19.7.6 控制平面数据特定 NAS 级拥塞控制 222 5.20 网络能力外部暴露 223 5.20A 从 AF 224 采集数据 5.21 虚拟化部署的体系结构支持 224 5.21.0 概述 224 5.21.1 氮气 225 的建筑支架 5.21.1.1 TNL 协会 225 5.21.1.2 NGAP UE TNLA 绑定 225 5.21.1.3 氮气 TNL 关联选择 225 5.21.2 AMF 管理 226 5.21.2.1 AMF 添加/更新 226 5.21.2.2 AMF 计划拆除程序 226 5.21.2.2.1 部署了 UDSF 的 AMF 计划拆除程序 226 5.21.2.2.2 无 UDSF 的 AMF 计划拆除程序 228 5.21.2.3 AMF 自动恢复程序 229 5.21.3 带机组的网络可靠性支持 231 5.21.3.1 概述 231 5.21.3.2 NF 集和 NF 服务集 231 5.21.3.3 同一个 nf 集内 nf 实例的可靠性 231 5.21.3.4 NF 服务的可靠性 231 5.21.4 网络功能/nf 服务上下文传输 232 5.21.4.1 概述 232 5.22 优先机制的系统使能器 232 5.22.1 概述 232 5.22.2 与认购相关的优先机制 232 5.22.3 与调用相关的优先级机制 233 5.22.4 应用于已建立的 QoS 流的 QoS 机制 234 5.23 支持异步通信 234 5.24 3GPP PS 数据关闭 235 5.25 支持 OAM 功能 235 5.25.1 跟踪支持:基于信令的跟踪激活/停用 235 5.25.2 支持基于 OAM 的 5G VN 集团管理 236 5.26 配置转移程序 236 5.26.1 配置转移的架构原则 236 5.26.2 寻址、路由和中继 237 5.26.2.1 寻址 237 3GPP 错误!文档中没有指定样式的文字。 11 3GPP TS 23.501 V16.1.0(2019-06 年) 5.26.2.2 路线 237 5.26.2.3 继电保护 237 5.27 时间敏感通信 238 5.27.0 概述 238 5.27.1 TSN 时间同步 238 5.27.1.1 概述 238 5.27.1.2 定时信息的分发 238 5.27.1.2.1 5G 内部系统时钟分布 238 5.27.1.2.2 TSN 时钟分布及时间戳 239 5.27.1.3 支持多个 TSN 工作域 239 5.27.1a 周期性确定性 QoS 239 5.27.2 TSC 援助信息(TSCAI)240 5.27.3 支持 TSC QoS 流 240 5.27.4 保持和向前缓冲机构 240 5.27.5 5G 系统电桥延迟 241 5.28 支持与 TSN 241 集成 5.28.1 5GS 逻辑 TSN 网桥管理 241 5.28.2 5GS 网桥配置的 QoS 参数映射 243 5.28.3 5GS 中的端口管理信息交换 243 5.28.3.1 概述 243 5.28.4 QoS 映射表 243 5.29 支持 5G LAN 类型服务 244 5.29.1 概述 244 5.29.2 5G VN 集团管理 245 5.29.3 PDU 会话管理 246 5.29.4 用户飞机处理 246 5.30 对非公用网络的支持 247 5.30.1 概述 247 5.30.2 独立的非公用网络 247 5.30.2.1 标识符 247 5.30.2.2 广播系统信息 247 5.30.2.3 UE 配置和订阅方面 248 5.30.2.4 SNPN 接入方式下的网络选择 248 5.30.2.5 网络访问控制 248 5.30.2.6 SNPN 接入模式中的细胞(RE-)选择 249 5.30.2.7 通过独立的非公用网络访问 PLMN 服务 249 5.30.2.8 通过 PLMN 249 访问独立的非公用网络服务 5.30.3 公共网络集成 NPN 250 5.30.3.1 概述 250 5.30.3.2 标识符 250 5.30.3.3 UE 配置、订阅特性和存储 250 5.30.3.4 网络和小区(RE-)选择和访问控制 251 5.30.3.5 支持 CAG 单元的应急服务 252 5.31 支持细胞物联网 252 5.31.1 概述 252 5.31.2 首选和支持的网络行为 252 5.31.3 EPS 和 5GS 253 之间的选择、转向和重定向 5.31.4 控制平面 CIOT 5GS 优化 254 5.31.4.1 概述 254 5.31.4.2 控制平面 CIOT 5GS 优化中数据传输期间 N3 数据传输的建立 255 5.31.5 非 IP 数据传输(NIDD)255 5.31.6 可靠数据服务 255 3GPP 错误!文档中没有指定样式的文字。 12 3GPP TS 23.501 V16.1.0(2019-06 年) 5.31.7 节能增强功能 256 5.31.7.1 概述 256 5.31.7.2 CM-空闲和 CM-连接 RRC-非活动的扩展不连续接收(DRX)256 5.31.7.2.1 概述 256 5.31.7.2.2 与 5GC 258 相连的 E-UTRA 中扩展空闲模式 DRX 的寻呼 5.31.7.3 延长连接时间的 MICO 模式 259 5.31.7.4 激活时间为 259 的 MICO 模式 5.31.7.5 MICO 模式和定期登记计时器控制 259 5.31.8 高延迟通信 260 5.31.9 支持监控事件 260 5.31.10 NB IOT UE 无线电能力处理 261 5.31.11 大鼠间空闲模式移入和移出 NB IOT 261 5.31.12 限制使用增强覆盖 261 5.31.13 寻呼以增强覆盖 262 5.31.14 支持用户数据速率控制 262 5.31.14.1 概述 262 5.31.14.2 服务 PLMN 速率控制 262 5.31.14.3 小数据速率控制 263 5.31.15 控制平面数据传输拥塞控制 264 5.31.16 服务差距控制 264 5.31.17 NB IOT 266 的用户间 QoS 5.31.18 用户平面 CIOT 5GS 优化 266 5.32 支持 ATSSS 267 5.32.1 概述 267 5.32.2 多访问 PDU 会话 267 5.32.3 ATSSS 控制政策 269 5.32.4 QoS 支持 269 5.32.5 接入网络性能测量 270 5.32.5.1 一般原则 270 5.32.5.2 往返时间测量 270 5.32.5.3 访问可用性/不可用性报告 271 5.32.5.4 用户平面测量和测量报告协议栈 272 5.32.6 转向功能的支持 272 5.32.6.1 概述 272 5.32.6.2 高级转向功能 274 5.32.6.2.1 MPTCP 功能 274 5.32.6.3 低层转向功能 274 5.32.6.3.1 ATSSS-LL 功能 274 5.32.7 与 EPS 274 的互通 5.32.8 ATSSS 规则 275 5.33 支持超可靠的低延迟通信 276 5.33.1 概述 276 5.33.2 高可靠性通信的冗余传输 276 5.33.2.1 基于双连接的端到端冗余用户平面路径 276 5.33.2.2 支持 N3/N9 接口上的冗余传输 278 5.33.2.3 支持传输层 280 的冗余传输 5.34 支持特定 SMF 服务区域的部署拓扑 280 5.34.1 概述 280 5.34.2 建筑 281 5.34.2.1 SBA 架构 281 5.34.2.2 非漫游架构 281 5.34.2.3 漫游架构 282 3GPP 错误!文档中没有指定样式的文字。 13 3GPP TS 23.501 V16.1.0(2019-06 年) 5.34.3 I-SMF 选择 282 5.34.4 I-SMF 283 控制的 PDU 会话使用 UL 分类器 5.34.5 i-smf 283 控制的 PDU 会话使用 ipv6 多归位 5.34.6 i-smf 和 smf 之间的交互,以支持 i-smf 284 控制的 upf 的流量卸载 5.34.6.1 概述 284 5.34.6.2 N4 从 SMF 向 I-SMF 发送的本地流量卸载信息 285 6 网络功能 285 6.1 概述 285 6.2 网络功能功能描述 285 6.2.1 AMF 285 6.2.2 脱脂奶粉 287 6.2.3 UPF 288 6.2.4 PCF 288 6.2.5 内福 289 6.2.5.1 对 Capif 290 的支持 6.2.5a 中间 NEF 290 6.2.6 NRF 290 6.2.7 UDM 291 6.2.8 澳大利亚联邦 292 6.2.9 N3IWF 292 型 6.2.9A TNGF 293 6.2.10 自动对焦 293 6.2.11 UDR 293 6.2.12 UDSF 294 6.2.13 平方英尺 294 6.2.14 全国社保基金 294 6.2.15 5G-EIR 294 6.2.16 低分子量纤维 294 6.2.17 SEPP 294 号 6.2.18 网络数据分析功能(NWDAF)295 6.2.19 SCP 295 标准 6.2.20 w-agf 296 型 6.2.21 UE 无线电能力管理功能(UCMF)296 6.3 网络功能与网络功能服务发现与选择原则 296 6.3.1 概述 296 6.3.1.0 绑定、选择和重新选择原则 297 6.3.1.1 与间接通信相关的 NF 发现和选择方面 298 6.3.1.2 位置信息 298 6.3.2 SMF 发现和选择 299 6.3.3 用户平面功能选择 300 6.3.3.1 概述 300 6.3.3.2 SMF 提供可用的 UPF 301 6.3.3.3 为特定 PDU 会议 301 选择 UPF 6.3.4 AUSF 发现和选择 302 6.3.5 AMF 发现和选择 303 6.3.6 N3IWF 选择 305 6.3.6.1 概述 305 6.3.6.2 独立 N3IWF 选择 305 6.3.6.3 组合式 N3IWF/EPDG 选择 306 6.3.6.4 应急服务的 PLMN 选择 307 6.3.7 PCF 发现和选择 307 6.3.7.0 一般原则 307 6.3.7.1 UE 或 PDU 会话的 PCF 发现和选择 308 3GPP 错误!文档中没有指定样式的文字。 14 3GPP TS 23.501 V16.1.0(2019-06 年) 6.3.7.2 提供适用于多个 UE 的政策要求,从而适用于多个 PCF 309。 6.3.7.3 将针对 IP 地址的 AF 请求绑定到相关 PCF 310 6.3.8 UDM 发现和选择 310 6.3.9 UDR 发现和选择 311 6.3.10 SMSF 发现和选择 311 6.3.11 CHF 发现和选择 311 6.3.12 可信非 3gpp 接入网选择 312 6.3.12.1 概述 312 6.3.12.2 接入网选择程序 313 6.3.12 不支持 5gc NAS over WLAN 315 的设备的访问网络选择 6.3.12A.1 概述 315 6.3.12A.2 接入网选择程序 315 6.3.13 NWDAF 发现和选择 316 7 网络功能服务及说明 317 7.1 网络功能服务框架 317 7.1.1 概述 317 7.1.2 NF 服务使用者-NF 服务生产者交互 317 7.1.3 网络功能服务发现 319 7.1.4 网络功能服务授权 319 7.1.5 网络功能和网络功能服务注册和注销 320 7.2 网络功能服务 320 7.2.1 概述 320 7.2.2 AMF 服务 321 7.2.3 SMF 服务 322 7.2.4 PCF 服务 322 7.2.5 UDM 服务 323 7.2.6 NRF 服务 324 7.2.7 AUSF 服务 324 7.2.8 NEF 服务 325 7.2.9 SMSF 服务 325 7.2.10 UDR 服务 326 7.2.11 5G-EIR 服务 326 7.2.12 NWDAF 服务 326 7.2.13 UDSF 服务 327 7.2.14 全国社保基金服务 327 7.2.15 BSF 服务 327 7.2.16 LMF 服务 327 7.2.17 CHF 服务 327 7.2.18 UCMF 服务 328 7.2.19 自动对焦服务 328 7.3 暴露 328 8 控制和用户平面协议栈 329 8.1 概述 329 8.2 控制平面协议栈 329 8.2.1 5G-AN 和 5G 核心之间的控制平面协议栈:n2 329 8.2.1.1 概述 329 8.2.1.2 安-AMF 330 8.2.1.3 安-SMF 330 8.2.2 UE 和 5GC 330 之间的控制平面协议栈 8.2.2.1 概述 330 8.2.2.2 UE-AMF 332 3GPP 错误!文档中没有指定样式的文字。 15 3GPP TS 23.501 V16.1.0(2019-06 年) 8.2.2.3 UE–SMF 332 8.2.3 5GC 333 中网络功能之间的控制平面协议栈 8.2.3.1 基于服务接口的控制平面协议栈 333 8.2.3.2 SMF 和 UPF 333 之间 N4 接口的控制平面协议栈 8.2.4 不可信非 3gpp 接入控制平面 334 8.2.5 可信非 3gpp 接入控制平面 335 8.2.6 W-5gan 入口控制平面 335 8.3 用户平面协议栈 335 8.3.1 PDU 会话 335 的用户平面协议栈 8.3.2 非可信非 3gpp 接入用户平面图 337 8.3.3 可信非 3gpp 接入用户平面图 337 8.3.4 W-5gan 接入用户平面图 337 8.3.5 5G VN 组基于 N19 转发的用户平面 338 附录 A(资料性附录):基于服务的接口与参考点 339 之间的关系 附录 B(规范性附录):临时身份之间的映射 341 附录 C(资料性附录):计算存储分离的指南和原则 342 附件 D(资料性附录):5GS 支持非公共网络部署方案 343 D.1 简介 343 D.2 支持非公共网络作为 PLMN 343 的一个网络切片 附录 E(资料性附录):NF/NF 服务交互的通信模型 344 E.1 概述 344 附录 F(资料性附录):基于每个设备 346 多个 UE 的冗余用户平面路径 附录 G(资料性附录):SCP 部署示例 349 G.1 概述 349 G.2 基于服务网格 349 的 SCP G.2.1 简介 349 G.2.2 跨越服务网格边界的通信 350 G.3 基于独立部署单元的 SCP 351 G.4 基于基于名称的路由 352 的 SCP 部署示例 G.4.0 一般信息 352 G.4.1 服务注册和服务发现 353 G.4.2 部署场景 354 概述 G.4.3 参考文献 354 附录 H(规范性附录):时间同步进入时间信号 355 附录 H(资料性附录):变更历史 356

最新推荐

QI无线充电方案.pdf

QI协议无线充电方案,可以直接用于项目开发中,值得收藏! --------------------------------------

无线充电系统原理介绍- Qi协议5阶段 ASK 电压动态调节 以RT1650举例介绍.pdf

无线充电系统原理介绍:包含发射端 + 接收端 内容包含:Qi协议建立通信的五个阶段、ASK调制、功率传输效率、FOD金属异物检测、电压动态调节等

基于qt和mysql的大学生二手管理系统.zip

用c++/qt写的项目,项目都经测试过,真实可靠,能跑通,可以直接运行,请放心下载使用。

车牌识别(创新点:蓝色绿色黄色三色车牌,GUI界面).zip

车牌识别(创新点:蓝色绿色黄色三色车牌,GUI界面).zip

openwrt libpcap a53版ipk插件

openwrt平台 mentohust依赖框架,适用于arm a53平台,先安装libpcap即可安装mentohust进行校园网认证

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�