上述的训练代码有些错误,请更正
时间: 2024-02-18 07:01:44 浏览: 102
非常抱歉,我之前的代码确实存在错误。以下是修改后的代码:
```python
import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.datasets import CocoDetection
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
# define the model
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# get the number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes=2) # 2 classes: background and object
# define the dataset and data loader
dataset = CocoDetection(root='./coco_dataset/train2017', annFile='./coco_dataset/annotations/instances_train2017.json',
transforms=transforms.Compose([transforms.ToTensor()]))
data_loader = DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=torchvision.datasets.coco.collate_fn)
# define the optimizer and the learning rate scheduler
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
# train the model for 10 epochs
num_epochs = 10
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
torchvision.models.detection.train_one_epoch(model, optimizer, data_loader, device=torch.device('cuda'))
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset every epoch
torchvision.models.detection.evaluate(model, data_loader, device=torch.device('cuda'))
# save the model
torch.save(model.state_dict(), 'fasterrcnn_resnet50_fpn_class_agnostic.pt')
```
修改后的代码中,数据集的根目录应该是`./coco_dataset/train2017`,而不是`./coco_dataset`。此外,`collate_fn`应该是`torchvision.datasets.coco.collate_fn`,而不是`utils.collate_fn`。`train_one_epoch`和`evaluate`函数应该是`torchvision.models.detection`模块下的函数,而不是`utils`模块下的函数。最后,在训练过程中,应该指定`device`为`torch.device('cuda')`,以充分利用GPU加速训练。
阅读全文