model.fit cannot pickle 'generator' object
时间: 2024-01-12 12:04:52 浏览: 142
解决python多线程报错:AttributeError: Cant pickle local object问题
This error occurs when you try to use a generator object as input to the `fit` method of a Keras model. The `fit` method requires inputs to be in the form of a numpy array or a tf.data.Dataset object, but a generator object is not pickleable and cannot be converted to one of these forms.
To resolve this error, you need to convert the generator object to a numpy array or a tf.data.Dataset object before passing it to the `fit` method. One way to do this is to use the `tf.data.Dataset.from_generator` method to convert the generator to a dataset. Here is an example:
```python
import tensorflow as tf
# Define your generator function
def my_generator():
...
# Convert the generator to a dataset
dataset = tf.data.Dataset.from_generator(my_generator, output_types=(tf.float32, tf.int32))
# Create your Keras model
model = tf.keras.models.Sequential(...)
model.compile(...)
# Train your model using the dataset
model.fit(dataset, ...)
```
Alternatively, you can convert your generator to a numpy array using the `numpy` method from the `tf.data.Dataset` object, like this:
```python
import tensorflow as tf
import numpy as np
# Define your generator function
def my_generator():
...
# Convert the generator to a dataset
dataset = tf.data.Dataset.from_generator(my_generator, output_types=(tf.float32, tf.int32))
# Convert the dataset to a numpy array
x, y = np.array(list(dataset))
# Create your Keras model
model = tf.keras.models.Sequential(...)
model.compile(...)
# Train your model using the numpy array
model.fit(x, y, ...)
```
阅读全文