基于stm32f4芯片在lcd屏上显示led灯闪烁次数
时间: 2024-02-05 19:12:26 浏览: 74
要在LCD屏幕上显示LED灯的闪烁次数,您需要使用STM32F4芯片的定时器和外部中断功能来捕获LED灯的闪烁次数,并使用STM32F4芯片的SPI或I2C接口将数据发送到LCD屏幕上进行显示。
以下是基于STM32F4芯片的示例代码:
```c
#include "stm32f4xx.h"
#include "stm32f4xx_spi.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#define LED_PIN GPIO_Pin_13
#define LED_GPIO_PORT GPIOD
#define LED_GPIO_CLK RCC_AHB1Periph_GPIOD
#define LCD_SPI_CLK RCC_APB2Periph_SPI1
#define LCD_SPI GPIOA
#define LCD_SPI_CLK_PIN GPIO_Pin_5
#define LCD_SPI_MISO_PIN GPIO_Pin_6
#define LCD_SPI_MOSI_PIN GPIO_Pin_7
#define LCD_CS_PIN GPIO_Pin_4
#define INTERRUPT_PIN GPIO_Pin_0
#define INTERRUPT_GPIO_PORT GPIOA
#define INTERRUPT_GPIO_CLK RCC_AHB1Periph_GPIOA
#define INTERRUPT_EXTI EXTI_Line0
#define INTERRUPT_EXTI_PORT_SOURCE EXTI_PortSourceGPIOA
#define INTERRUPT_EXTI_PIN_SOURCE EXTI_PinSource0
#define INTERRUPT_EXTI_IRQ EXTI0_IRQn
volatile uint32_t led_count = 0;
void LED_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable the LED Clock */
RCC_AHB1PeriphClockCmd(LED_GPIO_CLK, ENABLE);
/* Configure the LED pin */
GPIO_InitStructure.GPIO_Pin = LED_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(LED_GPIO_PORT, &GPIO_InitStructure);
}
void LCD_SPI_Config(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
SPI_InitTypeDef SPI_InitStruct;
/* Enable the SPI Clock */
RCC_APB2PeriphClockCmd(LCD_SPI_CLK, ENABLE);
/* Configure the SPI pins */
GPIO_InitStruct.GPIO_Pin = LCD_SPI_CLK_PIN | LCD_SPI_MISO_PIN | LCD_SPI_MOSI_PIN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(LCD_SPI, &GPIO_InitStruct);
/* Configure the SPI CS pin */
GPIO_InitStruct.GPIO_Pin = LCD_CS_PIN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(LCD_SPI, &GPIO_InitStruct);
/* Connect SPI pins to the SPI alternate function */
GPIO_PinAFConfig(LCD_SPI, GPIO_PinSource5, GPIO_AF_SPI1);
GPIO_PinAFConfig(LCD_SPI, GPIO_PinSource6, GPIO_AF_SPI1);
GPIO_PinAFConfig(LCD_SPI, GPIO_PinSource7, GPIO_AF_SPI1);
/* Configure the SPI */
SPI_InitStruct.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStruct.SPI_Mode = SPI_Mode_Master;
SPI_InitStruct.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStruct.SPI_NSS = SPI_NSS_Soft;
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_Init(SPI1, &SPI_InitStruct);
/* Enable the SPI */
SPI_Cmd(SPI1, ENABLE);
}
void INTERRUPT_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
EXTI_InitTypeDef EXTI_InitStruct;
NVIC_InitTypeDef NVIC_InitStruct;
/* Enable the interrupt clock */
RCC_AHB1PeriphClockCmd(INTERRUPT_GPIO_CLK, ENABLE);
/* Configure the interrupt pin */
GPIO_InitStruct.GPIO_Pin = INTERRUPT_PIN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(INTERRUPT_GPIO_PORT, &GPIO_InitStruct);
/* Configure the external interrupt */
EXTI_InitStruct.EXTI_Line = INTERRUPT_EXTI;
EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
EXTI_InitStruct.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStruct);
/* Connect the interrupt pin to the EXTI line */
SYSCFG_EXTILineConfig(INTERRUPT_EXTI_PORT_SOURCE, INTERRUPT_EXTI_PIN_SOURCE);
/* Enable the interrupt in the NVIC */
NVIC_InitStruct.NVIC_IRQChannel = EXTI0_IRQn;
NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0x00;
NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0x00;
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);
}
void EXTI0_IRQHandler(void)
{
if (EXTI_GetITStatus(INTERRUPT_EXTI) != RESET) {
led_count++;
EXTI_ClearITPendingBit(INTERRUPT_EXTI);
}
}
void LCD_WriteData(uint8_t data)
{
GPIO_ResetBits(LCD_SPI, LCD_CS_PIN); // Set the CS pin low
SPI_I2S_SendData(SPI1, data); // Send the data
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); // Wait for the transmit buffer to be empty
GPIO_SetBits(LCD_SPI, LCD_CS_PIN); // Set the CS pin high
}
void LCD_WriteString(char* str)
{
while (*str) {
LCD_WriteData(*str++);
}
}
void LCD_Clear(void)
{
LCD_WriteString("LED Count: 0");
}
void LCD_Update(void)
{
char buffer[16];
sprintf(buffer, "LED Count: %d", led_count);
LCD_Clear();
LCD_WriteString(buffer);
}
int main(void)
{
LED_GPIO_Config();
LCD_SPI_Config();
INTERRUPT_GPIO_Config();
LCD_Clear();
while (1) {
LED_GPIO_PORT->BSRRL = LED_PIN; // Turn the LED on
delay(100);
LED_GPIO_PORT->BSRRH = LED_PIN; // Turn the LED off
delay(100);
LCD_Update();
}
}
void delay(uint32_t ms)
{
uint32_t i, j;
for (i = 0; i < ms; i++) {
for (j = 0; j < 2000; j++) {
__NOP();
}
}
}
```
这段代码将设置LED灯的闪烁次数,并将其发送到LCD屏幕上进行显示。在主函数中,我们使用LED_GPIO_Config()函数配置LED引脚,使用LCD_SPI_Config()函数配置SPI接口和CS引脚,使用INTERRUPT_GPIO_Config()函数配置外部中断引脚,然后开始循环。
在循环中,我们使用LED_GPIO_PORT->BSRRL和LED_GPIO_PORT->BSRRH指令来打开和关闭LED灯,并使用LCD_Update()函数更新LCD屏幕上的显示。
当外部中断引脚被触发时,我们使用EXTI0_IRQHandler()函数递增led_count计数器,该计数器在LCD_Update()函数中使用。
请注意,此示例代码仅用于演示目的。您需要根据您的实际硬件和需求进行修改。
阅读全文