编写基于FCN模型实现图像分割的代码
时间: 2024-03-19 19:42:08 浏览: 63
好的,下面是基于FCN模型实现图像分割的Python代码,以VOC2012数据集为例:
```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
# 定义FCN模型
def FCN(input_shape, num_classes):
inputs = tf.keras.layers.Input(input_shape)
conv1 = tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu')(inputs)
conv2 = tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu')(conv1)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = tf.keras.layers.Conv2D(128, 3, padding='same', activation='relu')(pool1)
conv4 = tf.keras.layers.Conv2D(128, 3, padding='same', activation='relu')(conv3)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = tf.keras.layers.Conv2D(256, 3, padding='same', activation='relu')(pool2)
conv6 = tf.keras.layers.Conv2D(256, 3, padding='same', activation='relu')(conv5)
conv7 = tf.keras.layers.Conv2D(256, 3, padding='same', activation='relu')(conv6)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv7)
conv8 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(pool3)
conv9 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(conv8)
conv10 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(conv9)
pool4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv10)
conv11 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(pool4)
conv12 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(conv11)
conv13 = tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu')(conv12)
pool5 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv13)
conv14 = tf.keras.layers.Conv2D(4096, 7, padding='same', activation='relu')(pool5)
conv15 = tf.keras.layers.Conv2D(4096, 1, padding='same', activation='relu')(conv14)
conv16 = tf.keras.layers.Conv2D(num_classes, 1, padding='same')(conv15)
upsample = tf.keras.layers.Conv2DTranspose(num_classes, kernel_size=(64, 64), strides=(32, 32), padding='same')(conv16)
outputs = tf.keras.layers.Activation('softmax')(upsample)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
# 定义损失函数
def dice_loss(y_true, y_pred):
numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=(1, 2, 3))
denominator = tf.reduce_sum(y_true + y_pred, axis=(1, 2, 3))
loss = 1 - numerator / denominator
return loss
# 定义数据增强技术
def data_augmentation(image, mask):
image = tf.image.random_brightness(image, 0.2)
image = tf.image.random_contrast(image, 0.5, 1.5)
image = tf.image.random_flip_left_right(image)
image = tf.image.random_flip_up_down(image)
mask = tf.image.random_brightness(mask, 0.2)
mask = tf.image.random_contrast(mask, 0.5, 1.5)
mask = tf.image.random_flip_left_right(mask)
mask = tf.image.random_flip_up_down(mask)
return image, mask
# 加载数据集
def load_data():
train_images = np.load('train_images.npy')
train_masks = np.load('train_masks.npy')
val_images = np.load('val_images.npy')
val_masks = np.load('val_masks.npy')
return train_images, train_masks, val_images, val_masks
# 训练模型
def train_model(model, train_images, train_masks, val_images, val_masks, batch_size, epochs):
train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_masks))
train_dataset = train_dataset.shuffle(buffer_size=1000)
train_dataset = train_dataset.map(data_augmentation)
train_dataset = train_dataset.batch(batch_size)
val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_masks))
val_dataset = val_dataset.batch(batch_size)
model.compile(optimizer='adam', loss=dice_loss, metrics=['accuracy'])
history = model.fit(train_dataset, epochs=epochs, validation_data=val_dataset)
return history
# 测试模型
def test_model(model, images):
masks = model.predict(images)
masks = np.argmax(masks, axis=-1)
return masks
# 可视化分割结果
def visualize_results(images, masks):
num_images = images.shape[0]
fig, axes = plt.subplots(nrows=num_images, ncols=2, figsize=(10, 10))
for i in range(num_images):
axes[i, 0].imshow(images[i])
axes[i, 1].imshow(masks[i])
plt.show()
if __name__ == '__main__':
input_shape = (256, 256, 3)
num_classes = 21
batch_size = 16
epochs = 50
model = FCN(input_shape, num_classes)
train_images, train_masks, val_images, val_masks = load_data()
history = train_model(model, train_images, train_masks, val_images, val_masks, batch_size, epochs)
test_images = np.load('test_images.npy')
masks = test_model(model, test_images)
visualize_results(test_images, masks)
```
需要注意的是,以上代码仅供参考,具体实现细节可能会有所不同,需要根据具体情况进行调整。
阅读全文