const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;什么意思
时间: 2024-05-23 14:13:31 浏览: 157
这行代码定义了一个名为 SystemFrequency_SysClk 的常量,其值为 72000000,也就是 STM32F1 系列微控制器的系统时钟频率,单位为 Hz。SYSCLK_FREQ_72MHz 是一个宏定义,表示 72MHz,用于提高代码的可读性和可维护性。在 STM32F1 系列微控制器中,系统时钟可以通过各种方式配置,该常量的值取决于实际配置。
相关问题
基于软件stm32cubemx和板子stm32F103C8T6,编写符合以下要求的主函数代码:配置8兆的晶振,72Mhz的APB1时钟频率,利用定时器中断实现0.5s闪led灯一次,5s过后led灯一直亮着,10s后led灯熄灭。任意期间按一次按键,就要从头开始闪烁的任务。
首先,我们需要明确的是STM32CubeMX是一款图形化配置工具,并非直接生成代码,但它能帮助我们设置STM32的寄存器值。不过,基于您的需求,我可以提供一段示例C代码,说明如何通过代码来实现您描述的功能。假设已有一个按键中断初始化好的结构(如KeypadInterrupt),以下是一个基础的示例,包括配置时钟、定时器和LED闪烁及按键处理:
```c
#include "stm32f1xx_hal.h"
#include "stm32f10x_tim.h"
#include "stm32f10x_gpio.h"
#define LED_PIN GPIO_Pin_12
#define KEY_PIN GPIO_Pin_0
#define LED_GPIO_PORT GPIOA
#define KEY_GPIO_PORT GPIOB
// 定义定时器参数
TIM_HandleTypeDef htim1;
const uint32_t APB1Prescaler = (HAL_RCC_GetPCLK1Freq() / 72000000U - 1);
const uint32_t TimerPeriod = (8000000 * 2) - 1; // 8MHz晶振,周期约为0.5s
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
Error_Handler();
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
if HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
Error_Handler();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
}
void Tim1_IRQHandler(void)
{
TIM_ClearITPendingBit(htim1.Instance, TIM_IT_Update);
HAL_GPIO_TogglePin(LED_GPIO_PORT, LED_PIN);
}
int main(void)
{
HAL_Init();
SystemClock_Config();
TIM_TimeBaseInitTypeDef.TIM basal_freq;
basal_freq.Prescaler = APB1Prescaler;
basal_freq.CounterMode = TIM_COUNTERMODE_UP;
basal_freq.Period = TimerPeriod;
basal_freq.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Instance = TIM1;
htim1.Init = basal_freq;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
Error_Handler();
__TIM1_UP_IRQn_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = LED_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = KEY_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_GPIO_PORT, &GPIO_InitStruct);
while (1)
{
// 检查按键是否按下
if (__HAL_GPIO_EXTI_GET_IT(KEY_GPIO_PORT, KEY_PIN))
{
// 按键按下,清零定时器并重新开始闪烁
TIM_Cmd(&htim1, ENABLE);
HAL_GPIO_EXTI_IRQHandler(KEY_GPIO_PORT);
HAL_Delay(500);
TIM_Cmd(&htim1, DISABLE);
}
if (HAL_TIM_Base_GetOverrun(&htim1) == TIM_FLAG_UPDATE)
{
TIM_Cmd(&htim1, DISABLE);
HAL_GPIO_TogglePin(LED_GPIO_PORT, LED_PIN);
HAL_Delay(5000);
TIM_Cmd(&htim1, ENABLE);
}
// 如果已经过去了10秒
if (HAL_TIM_Base_GetTime(&htim1) >= 10000UL)
{
HAL_GPIO_WritePin(LED_GPIO_PORT, LED_PIN, GPIO_PIN_SET);
HAL_Delay(5000);
HAL_GPIO_WritePin(LED_GPIO_PORT, LED_PIN, GPIO_PIN_RESET);
}
}
}
// 错误处理函数
void Error_Handler(void)
{
while (1)
{
}
}
```
注意:此代码仅为示例,实际应用中可能需要根据具体的STM32库文件和硬件配置进行调整。同时,对于按键中断部分,你需要确保你的按键连接到正确的中断引脚,并且该中断已经被正确地连接到`__TIM1_UP_IRQn`上。
esp32和stm32串口通信
ESP32和STM32之间的串口通信可以通过以下步骤实现:
1. 首先,确定通信的波特率、数据位、停止位和校验位等参数。
2. 在ESP32和STM32上分别配置串口通信模块,设置相应的参数。在ESP32上,可以使用ESP-IDF中提供的串口通信API(如uart_driver_install、uart_param_config等)进行配置,在STM32上,可以使用HAL库中提供的串口通信API进行配置。
3. 在ESP32和STM32上编写程序,实现数据的发送和接收。在ESP32上,可以使用uart_write_bytes函数向串口发送数据,使用uart_read_bytes函数从串口接收数据;在STM32上,可以使用HAL库中提供的USART_SendData和USART_ReceiveData函数进行数据的发送和接收。
4. 在程序中添加适当的延时或者使用中断方式进行数据的处理,以确保数据的可靠传输。
下面是ESP32和STM32之间串口通信的示例代码:
ESP32代码:
```c
#include "driver/uart.h"
#define UART_TX_PIN 17
#define UART_RX_PIN 16
void app_main()
{
uart_config_t uart_config = {
.baud_rate = 9600,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE
};
uart_param_config(UART_NUM_2, &uart_config);
uart_set_pin(UART_NUM_2, UART_TX_PIN, UART_RX_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
uart_driver_install(UART_NUM_2, 1024, 0, 0, NULL, 0);
uint8_t data[] = "Hello, STM32!";
while (1) {
uart_write_bytes(UART_NUM_2, (const char *)data, sizeof(data));
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
```
STM32代码:
```c
#include "stm32f4xx_hal.h"
#include "string.h"
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART2_UART_Init();
uint8_t data[20];
memset(data, 0, sizeof(data));
while (1)
{
HAL_UART_Receive(&huart2, data, sizeof(data), 1000);
HAL_UART_Transmit(&huart2, data, sizeof(data), 1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
```
阅读全文