row.names
时间: 2023-08-27 08:16:05 浏览: 1872
`row.names` 是 R 语言中一个函数,用于获取或设置数据框或矩阵的行名。当使用 `row.names` 函数获取行名时,它会返回一个字符向量,其中每个元素都是数据框或矩阵中的一行的名称。当使用 `row.names` 函数设置行名时,它会将向量中的值分配给数据框或矩阵的行名。例如,可以使用以下代码设置 `my_matrix` 的行名:
```
row.names(my_matrix) <- c("row1", "row2", "row3")
```
相关问题
在 R 语言中,row.names 是一个函数和一个参数。作为一个参数,row.names 可以用于读取或写入数据框的行名称。例如,当读取 CSV 文件时,我们可以使用 row.names = 1 来指定第一列作为数据框的行名称。作为一个函数,row.names() 可以用于获取或设置数据框的行名称。例如,我们可以使用 row.names(dataframe) 来获取数据框的行名称,或使用 row.names(dataframe) <- new_names 来为数据框设置新的行名称。行名称通常用于标识数据框中每个观测的唯一标识符。那row.names=FALSE什么意思
在读取或写入数据框时,当设置 row.names = FALSE 时,表示不将文件中的行名称作为数据框的一列。在这种情况下,数据框会默认生成从 1 开始的数字行名称。如果数据框中的每一行都有一个唯一标识符,那么可以将 row.names 设置为该标识符所在列的编号,以便在读取时将其作为行名称。但如果文件中没有唯一标识符或不需要使用行名称,就可以将 row.names 设置为 FALSE。
解释这段代码for (i in cancer_types){ admat<-read.csv(str_c(dir,"\tcga_data\",i,"\admat.csv"),check.names=F) positive_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_rna.csv"),row.names = 1, check.names = F) negative_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_rna.csv"),row.names = 1, check.names = F) positive_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_mi.csv"),row.names = 1, check.names = F) negative_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_mi.csv"),row.names = 1, check.names = F) normal_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_rna.csv"),row.names = 1, check.names = F) normal_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_mi.csv"),row.names = 1, check.names = F) positive_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,positive_rna,positive_mi) negative_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,negative_rna,negative_mi) wilcox<-delta_wilcox_test(positive_delta,negative_delta,wilcox_pval) write.csv(wilcox,str_c(dir,"\tcga_data\",i,"\wilcox.csv"),quote=F,row.names=F) row.names(wilcox)<-str_c(wilcox[,1],"",wilcox[,2]) positive_delta<-na.omit(positive_delta) row.names(positive_delta)<-str_c(positive_delta[,1],"",positive_delta[,2]) negative_delta<-na.omit(negative_delta) row.names(negative_delta)<-str_c(negative_delta[,1],"_",negative_delta[,2]) positive_delta<-positive_delta[row.names(positive_delta)%in%row.names(wilcox),] negative_delta<-negative_delta[row.names(negative_delta)%in%row.names(wilcox),] negative_delta<-negative_delta ml_input<-merge(positive_delta,negative_delta,by="row.names") ml_input<-ml_input write.csv(ml_input,str_c(dir,"\tcga_data\",i,"\ml_input.csv"),quote=F,row.names=F) }
这段代码是一个循环,它遍历一个名为"cancer_types"的列表中的每个元素。在循环的每一次迭代中,它执行以下操作:
1. 读取一个名为"admat.csv"的文件,并将其存储为一个数据框对象(admat)。
2. 读取名为"positive_normalized_rna.csv"和"negative_normalized_rna.csv"的文件,并将它们分别存储为数据框对象(positive_rna和negative_rna)。
3. 读取名为"positive_normalized_mi.csv"和"negative_normalized_mi.csv"的文件,并将它们分别存储为数据框对象(positive_mi和negative_mi)。
4. 读取名为"normal_normalized_rna.csv"和"normal_normalized_mi.csv"的文件,并将它们分别存储为数据框对象(normal_rna和normal_mi)。
5. 使用上述数据框对象以及一个名为"cal_delta_pcc"的函数计算正样本和负样本的delta值(positive_delta和negative_delta)。
6. 使用上述delta值以及一个名为"delta_wilcox_test"的函数计算Wilcoxon秩和检验结果(wilcox)。
7. 将Wilcoxon秩和检验结果(wilcox)写入名为"wilcox.csv"的文件。
8. 设置Wilcoxon秩和检验结果(wilcox)的行名(row.names)为两个变量的组合。
9. 删除正样本和负样本的delta值中的缺失值(na.omit)。
10. 设置正样本和负样本的delta值的行名(row.names)为两个变量的组合。
11. 从正样本和负样本的delta值中选择那些在Wilcoxon秩和检验结果(wilcox)中存在的行。
12. 将正样本和负样本的delta值进行合并(merge),并存储为一个名为"ml_input"的数据框对象。
13. 将合并后的数据框对象(ml_input)写入名为"ml_input.csv"的文件。
总体来说,这段代码根据给定的"cancer_types"列表中的每个元素,读取相应的数据文件,并进行一系列计算和处理操作,最终生成一个名为"ml_input.csv"的文件。
阅读全文