from tensorflow.keras import Model from tensorflow.keras.layers import Dense,Flatten,Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout import tensorflow as tf import pandas as pd x_train = pd.read_csv("train_x.csv") x_test = pd.read_csv("test_x.csv") y_train = pd.read_csv("train_y.csv") y_test = pd.read_csv("test_y.csv") x_train = x_train.values x_test = x_test.values y_train = y_train.values y_test = y_test.values class surpred(Model): def __init__(self): super(surpred, self).__init__() self.flatten = Flatten() self.d1 = Dense(16821) self.d2 = Dense(128) self.d3 = Dense(128) self.d5 = Dense(2,activation='softmax') def call(self,x): x1 = self.flatten(x) x2 = self.d1(x1) x3 = self.d2(x2) x4 = self.d3(x3) y = self.d5(x4) return y model=surpred() ##配置训练参数 model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),##依概率为输出的结果零logits=TURE metrics=['accuracy'] ) model.fit(x_train,y_train,batch_size=64,epochs=5,validation_data=(x_test,y_test),validation_freq=1) model.summary() model.evaluate(x_test,y_test)。这是我的模型代码,我想把我训练得到的模型第一层网络权重放到一个数组w[]中要怎么做
时间: 2023-11-13 16:04:14 浏览: 76
你可以使用 `model.layers[1].get_weights()` 获取第一层的权重,其中 `model.layers[1]` 表示获取模型的第一层(因为 Flatten 层没有权重),然后使用 `get_weights()` 获取该层的权重。这个函数会返回一个包含两个元素的元组,第一个元素是权重数组,第二个元素是偏置数组,你可以只保留权重数组。具体代码如下:
```
w = model.layers[1].get_weights()[0]
```
这样就可以将第一层网络权重放到一个数组 `w[]` 中了。
相关问题
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import os from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense np.set_printoptions(threshold=np.inf) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import plot_model # 创建模型 model = Sequential() model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1))) model.add(Conv2D(16, (3, 3), activation='relu'), padding='same') model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(225, activation='sigmoid')) # 输出模型结构图表 plot_model(model, show_shapes=True) TypeError: add() got an unexpected keyword argument 'padding'
在第6行和第7行中,您的代码中有一些语法错误。请注意在第6行中,由于缺少右括号,导致第7行的参数被视为model.add()函数的参数,而不是Conv2D()函数的参数。此外,在第7行中,您意外地在Conv2D()函数的括号之外使用了一个逗号。因此,您可以将代码更改如下所示:
```python
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import os
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import Model
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
np.set_printoptions(threshold=np.inf)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.utils import plot_model
# 创建模型
model = Sequential()
model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1)))
model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(225, activation='sigmoid'))
# 输出模型结构图表
plot_model(model, show_shapes=True)
```
请注意,在第6行和第7行中,我们已经修复了语法错误,并将输入参数放在正确的位置。现在,代码应该可以正常运行,输出模型结构图表。
写一个python神经网络,分子逆合成分析得到合成路线的完整代码。 import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D # 设置模型参数 model = Sequential() model.add(Dense(64, activation='r
elu', input_shape=(input_shape,))) model.add(Dense(64, activation='elu')) model.add(Dense(128, activation='elu')) model.add(Dense(256, activation='elu')) model.add(Dense(output_shape, activation='softmax')) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test)) # 使用模型进行预测 predictions = model.predict(x_test)
阅读全文