你的代码出现错误Expected 'estimator' to be a binary classifier, but got GridSearchCV fit on multiclass (3 classes) data
时间: 2024-03-25 08:42:08 浏览: 76
求救!!mybatis Expected one result (or null) to be returned by selectOne(), but found:18
这个错误是由于在二分类的情况下,模型输出的标签只有0和1两种可能,而在多分类的情况下,模型输出的标签有多个可能,因此需要使用不同的评估指标和绘图方法。
首先,你可以将KNeighborsClassifier中的参数weights设置为'uniform',这样可以保证每个邻居的权重相同。然后,你可以使用sklearn.metrics中的multiclass模块中的方法来计算多分类问题的性能指标。具体来说,你可以使用multiclass.confusion_matrix函数计算混淆矩阵,使用multiclass.classification_report函数计算分类报告。
以下是修改后的代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, classification_report, plot_precision_recall_curve, plot_roc_curve
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import label_binarize
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 将标签进行二值化处理
y = label_binarize(y, classes=[0, 1, 2])
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义KNN模型
knn = KNeighborsClassifier(weights='uniform')
# 定义需要搜索的参数空间
param_grid = {'n_neighbors': np.arange(1, 21, 2)}
# 网格搜索优化KNN模型
grid_search = GridSearchCV(knn, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)
# 随机搜索优化KNN模型
random_search = RandomizedSearchCV(knn, param_distributions=param_grid, cv=5, n_iter=10)
random_search.fit(X_train, y_train)
# 输出最优模型和最优k值
print("Grid Search: Best Model -", grid_search.best_estimator_)
print("Grid Search: Best k -", grid_search.best_params_['n_neighbors'])
print("Random Search: Best Model -", random_search.best_estimator_)
print("Random Search: Best k -", random_search.best_params_['n_neighbors'])
# 在测试集上评估模型性能
y_pred_grid = grid_search.predict(X_test)
y_pred_random = random_search.predict(X_test)
# 计算混淆矩阵,输出分类报告
cm_grid = confusion_matrix(y_test.argmax(axis=1), y_pred_grid.argmax(axis=1))
cm_random = confusion_matrix(y_test.argmax(axis=1), y_pred_random.argmax(axis=1))
print("Grid Search: Confusion Matrix\n", cm_grid)
print("Random Search: Confusion Matrix\n", cm_random)
print("Grid Search: Classification Report\n", classification_report(y_test.argmax(axis=1), y_pred_grid.argmax(axis=1)))
print("Random Search: Classification Report\n", classification_report(y_test.argmax(axis=1), y_pred_random.argmax(axis=1)))
# 绘制PR曲线和ROC曲线
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
plot_precision_recall_curve(grid_search, X_test, y_test, ax=ax1, name="Grid Search")
plot_precision_recall_curve(random_search, X_test, y_test, ax=ax1, name="Random Search")
plot_roc_curve(grid_search, X_test, y_test, ax=ax2, name="Grid Search")
plot_roc_curve(random_search, X_test, y_test, ax=ax2, name="Random Search")
plt.show()
```
这份代码中,首先使用label_binarize将标签二值化,然后将KNeighborsClassifier中的参数weights设置为'uniform'。接着,计算混淆矩阵和分类报告时使用multiclass中的函数,并将预测标签和真实标签分别使用argmax函数转换为类别标签。最后,在绘制PR曲线和ROC曲线时,使用OneVsRestClassifier将KNN模型转换为多分类模型。
阅读全文