用python写一个多普勒效应动态演示图的程序
时间: 2023-09-25 21:12:02 浏览: 67
以下是一个简单的 Python 程序,使用 Matplotlib 库绘制多普勒效应动态演示图:
```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
def doppler_shift(frequency, speed, observer_speed):
c = 343 # 声速
v = speed - observer_speed # 发射源相对于观察者的速度
numerator = c + v
denominator = c - observer_speed
return frequency * (numerator / denominator)
f = 1000 # 发射源发出的频率
s = 340 # 发射源的速度
o = np.linspace(-340, 340, 1000) # 观察者的速度范围
fig, ax = plt.subplots()
line, = ax.plot([], [])
def init():
ax.set_xlabel('Observer speed (m/s)')
ax.set_ylabel('Shifted frequency (Hz)')
ax.set_title('Doppler effect')
ax.set_xlim([min(o), max(o)])
ax.set_ylim([min(doppler_shift(f, s, o)), max(doppler_shift(f, s, o))])
return line,
def update(frame):
shifted_frequencies = doppler_shift(f, s, o + frame)
line.set_data(o, shifted_frequencies)
return line,
ani = FuncAnimation(fig, update, frames=np.linspace(0, 100, 100), init_func=init, blit=True)
plt.show()
```
该程序使用 `doppler_shift` 函数计算不同观察者速度下的多普勒移频,并使用 Matplotlib 库绘制多普勒效应动态演示图。程序使用 `FuncAnimation` 函数创建动画,每帧更新演示图的数据。
在该程序的示例中,发射源发出频率为 1000,发射源速度为 340。程序生成一个包含 1000 个观察者速度的范围,并在动画中更新该范围内的多普勒移频。程序使用 Matplotlib 库的 `FuncAnimation` 函数创建动画,将 `update` 函数作为每帧更新函数,并将 `init` 函数作为初始化函数。
阅读全文