在julia中不使用Flux构建并测试只有一层隐含层的神经网络的完整代码
时间: 2024-03-18 13:39:52 浏览: 42
不依靠第三方库实现一个神经网络
好的,以下是在Julia中不使用Flux构建并测试只有一层隐含层的神经网络的完整代码:
```julia
using Random
# 定义sigmoid函数
sigmoid(x) = 1 / (1 + exp(-x))
# 定义神经网络结构
struct NeuralNetwork
W1::Array{Float64, 2}
W2::Array{Float64, 2}
b1::Array{Float64, 1}
b2::Array{Float64, 1}
end
# 初始化神经网络参数
function initialize_parameters(input_size, hidden_size, output_size)
W1 = randn(hidden_size, input_size)
b1 = randn(hidden_size)
W2 = randn(output_size, hidden_size)
b2 = randn(output_size)
NeuralNetwork(W1, W2, b1, b2)
end
# 前向传播函数
function forward(nn::NeuralNetwork, x)
z1 = nn.W1 * x .+ nn.b1
a1 = sigmoid.(z1)
z2 = nn.W2 * a1 .+ nn.b2
a2 = sigmoid.(z2)
(a1, a2)
end
# 训练函数
function train(nn::NeuralNetwork, x_train, y_train, learning_rate, num_iterations)
for i in 1:num_iterations
# 随机选择一个样本
idx = rand(1:size(x_train, 2))
x = x_train[:, idx]
y = y_train[:, idx]
# 前向传播
a1, y_pred = forward(nn, x)
# 计算损失
loss = sum((y - y_pred).^2)
# 反向传播
delta2 = (y_pred - y) .* y_pred .* (1 - y_pred)
delta1 = nn.W2' * delta2 .* a1 .* (1 - a1)
# 更新参数
nn.W2 -= learning_rate * delta2 * a1'
nn.b2 -= learning_rate * delta2
nn.W1 -= learning_rate * delta1 * x'
nn.b1 -= learning_rate * delta1
end
nn
end
# 测试函数
function test(nn::NeuralNetwork, x_test, y_test)
correct = 0
for i in 1:size(x_test, 2)
x = x_test[:, i]
y = y_test[:, i]
_, y_pred = forward(nn, x)
correct += argmax(y_pred) == argmax(y)
end
correct / size(x_test, 2)
end
# 生成训练数据和测试数据
Random.seed!(123)
num_samples = 1000
input_size = 4
hidden_size = 5
output_size = 3
x_train = randn(input_size, num_samples)
y_train = zeros(output_size, num_samples)
for i in 1:num_samples
y_train[rand(1:output_size), i] = 1
end
x_test = randn(input_size, num_samples)
y_test = zeros(output_size, num_samples)
for i in 1:num_samples
y_test[rand(1:output_size), i] = 1
end
# 初始化神经网络
nn = initialize_parameters(input_size, hidden_size, output_size)
# 训练神经网络
nn_trained = train(nn, x_train, y_train, 0.1, 10000)
# 测试神经网络
accuracy = test(nn_trained, x_test, y_test)
println("Accuracy: $accuracy")
```
这段代码中,我们使用了随机梯度下降算法进行模型的训练,并使用了均方误差作为损失函数。在测试过程中,我们计算了模型的准确率。
阅读全文