方向交会法计算程序Python
时间: 2023-11-05 10:03:11 浏览: 152
利用C# 设计前方交会的计算程序
方向交会法是一种常用于海上、航空等领域的导航计算方法,可以用于确定目标物体的位置和航向。下面是一个简单的方向交会法计算程序Python示例:
```python
import math
# 计算两个点之间的距离
def distance(lat1, lon1, lat2, lon2):
R = 6371 # 地球平均半径,单位为公里
dLat = math.radians(lat2 - lat1)
dLon = math.radians(lon2 - lon1)
a = math.sin(dLat / 2) * math.sin(dLat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dLon / 2) * math.sin(dLon / 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = R * c
return d
# 计算方位角
def bearing(lat1, lon1, lat2, lon2):
dLon = math.radians(lon2 - lon1)
y = math.sin(dLon) * math.cos(math.radians(lat2))
x = math.cos(math.radians(lat1)) * math.sin(math.radians(lat2)) - math.sin(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.cos(dLon)
brng = math.atan2(y, x)
brng = math.degrees(brng)
brng = (brng + 360) % 360
return brng
# 计算交点坐标
def intersection(lat1, lon1, bearing1, lat2, lon2, bearing2):
lat1 = math.radians(lat1)
lon1 = math.radians(lon1)
lat2 = math.radians(lat2)
lon2 = math.radians(lon2)
bearing1 = math.radians(bearing1)
bearing2 = math.radians(bearing2)
dLat = lat2 - lat1
dLon = lon2 - lon1
alpha = math.acos(math.sin(lat1) * math.sin(lat2) + math.cos(lat1) * math.cos(lat2) * math.cos(dLon))
if alpha == 0:
return None
a = math.asin(math.sin(alpha) * math.sin(bearing2) / math.sin(math.pi - bearing1 - alpha))
b = math.asin(math.sin(alpha) * math.sin(bearing1) / math.sin(math.pi - bearing2 - alpha))
x = (math.sin(lat1) * math.cos(a) * math.cos(lon1) + math.sin(lat2) * math.cos(b) * math.cos(lon2)) / math.cos(a) / math.cos(b)
y = (math.sin(lat1) * math.cos(a) * math.sin(lon1) + math.sin(lat2) * math.cos(b) * math.sin(lon2)) / math.cos(a) / math.cos(b)
z = (math.cos(lat1) * math.cos(a) + math.cos(lat2) * math.cos(b)) / math.cos(a) / math.cos(b)
lat = math.atan2(z, math.sqrt(x * x + y * y))
lon = math.atan2(y, x)
lat = math.degrees(lat)
lon = math.degrees(lon)
return (lat, lon)
# 示例
lat1 = 39.9
lon1 = 116.3
lat2 = 31.2
lon2 = 121.5
dist1 = 1234.5
dist2 = 678.9
brng1 = 45
brng2 = 120
d = distance(lat1, lon1, lat2, lon2)
print("距离:{:.2f}公里".format(d))
b1 = bearing(lat1, lon1, lat2, lon2)
print("起点方位角:{:.2f}度".format(b1))
inter = intersection(lat1, lon1, brng1, lat2, lon2, brng2)
print("交点坐标:({}, {})".format(inter[0], inter[1]))
```
需要注意的是,方向交会法的计算过程中需要使用到三角函数等高等数学知识,因此如果不熟悉这些知识可能会比较困难。建议在使用之前先学习相关的数学知识,以免出现错误。
阅读全文