帮我写“基于 LSTM 的短期风速软测量”的matlab代码,使用data.xlsx数据,共计2列数据,全部数据为65535行,第1列数据为原始风速、第2列数据为分钟风速变化。要分出训练数据和测试数据,并给出风速预测结果和实际结果的对比曲线,要出现预测结果的曲线、训练误差曲线和相对误差曲线。
时间: 2024-04-22 12:22:14 浏览: 60
好的,以下是一个基于LSTM的短期风速软测量的MATLAB代码示例,使用data.xlsx数据,共计2列数据,全部数据为65535行,第1列数据为原始风速、第2列数据为分钟风速变化。代码实现了数据预处理、模型构建、训练和预测等步骤,并绘制了预测结果的曲线、训练误差曲线和相对误差曲线。
```matlab
% Load data from data.xlsx
data = readtable('data.xlsx');
% Normalize data
data = table2array(data);
data_norm = (data - min(data)) / (max(data) - min(data));
% Split data into training and testing sets
train_ratio = 0.8;
train_size = round(train_ratio * size(data_norm, 1));
train_data = data_norm(1:train_size, :);
test_data = data_norm(train_size+1:end, :);
% Create LSTM network
num_features = 2; % number of features in the input data
num_hidden_units = 32; % number of hidden units in the LSTM layer
num_layers = 2; % number of LSTM layers
output_size = 1; % number of output values
net = lstm(num_hidden_units, num_layers, 'OutputMode', 'last');
% Train LSTM network
max_epochs = 100; % maximum number of training epochs
mini_batch_size = 64; % mini-batch size for training
XTrain = train_data(:, 1); % input data for training
YTrain = train_data(:, 2); % target data for training
training_options = trainingOptions('adam', ...
'MaxEpochs', max_epochs, ...
'MiniBatchSize', mini_batch_size, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.01, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 50, ...
'Verbose', 1, ...
'Plots', 'training-progress');
[net, training_info] = trainNetwork(XTrain, YTrain, net, training_options);
% Predict wind speed for testing data
XTest = test_data(:, 1); % input data for testing
YTest = test_data(:, 2); % target data for testing
YPred = predict(net, XTest);
% Denormalize data
XTest = XTest * (max(data) - min(data)) + min(data);
YTest = YTest * (max(data) - min(data)) + min(data);
YPred = YPred * (max(data) - min(data)) + min(data);
% Plot prediction results
figure
plot(YTest, 'b')
hold on
plot(YPred, 'r')
xlabel('Time (minutes)')
ylabel('Wind speed')
legend('Actual', 'Predicted')
% Plot training error curve
figure
plot(training_info.TrainingLoss)
xlabel('Epoch')
ylabel('Training loss')
% Calculate relative error
relative_error = abs(YPred - YTest) ./ YTest;
% Plot relative error curve
figure
plot(relative_error)
xlabel('Time (minutes)')
ylabel('Relative error')
```
希望这个代码示例对您有所帮助。请注意,这只是一个简单的示例,您可能需要根据您的具体数据和问题进行修改和调整。
阅读全文