def step(self, epoch=None, metrics=None): if type(self.after_scheduler) != ReduceLROnPlateau: if self.finished and self.after_scheduler: if epoch is None: self.after_scheduler.step(None) else: self.after_scheduler.step(epoch - self.total_epoch) else: return super(GradualWarmupScheduler, self).step(epoch) else: self.step_ReduceLROnPlateau(metrics, epoch)
时间: 2024-02-10 10:06:38 浏览: 70
这段代码是 GradualWarmupScheduler 的 step 函数的实现,其中包含了一个判断语句。首先,它会检查 after_scheduler 是否为 ReduceLROnPlateau 类型。如果不是,它会根据当前的训练 epoch 和总的训练 epoch 数量来判断是否需要调用 after_scheduler.step() 函数来进一步调整学习率。如果已经训练完成,它也会调用 after_scheduler.step() 函数来进行学习率的调整。否则,它会调用 super() 函数来调用父类的 step 函数来进行学习率的调整。如果 after_scheduler 是 ReduceLROnPlateau 类型,那么它会调用 step_ReduceLROnPlateau 函数来进行学习率的调整。
相关问题
def step_ReduceLROnPlateau(self, metrics, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning if self.last_epoch <= self.total_epoch: warmup_lr = [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs] for param_group, lr in zip(self.optimizer.param_groups, warmup_lr): param_group['lr'] = lr else: if epoch is None: self.after_scheduler.step(metrics, None) else: self.after_scheduler.step(metrics, epoch - self.total_epoch)
这段代码看起来像是一个学习率调度器的实现,其中包含了一个 ReduceLROnPlateau 的函数。可以看出,这个函数的作用是在训练过程中动态地调整学习率,以提高模型的性能和稳定性。具体来说,这个函数会根据当前的 epoch 和总的训练 epoch 数量计算出一个 warmup_lr,然后将这个学习率设置为 optimizer 中各个参数组的学习率。当 epoch 大于总的训练 epoch 数量时,这个函数会调用一个 after_scheduler.step() 函数来进一步调整学习率。
def get_lr(self): if self.last_epoch > self.total_epoch: if self.after_scheduler: if not self.finished: self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs] self.finished = True return self.after_scheduler.get_lr() return [base_lr * self.multiplier for base_lr in self.base_lrs] if self.multiplier == 1.0: return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs] else: return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
这是 GradualWarmupScheduler 类中的一个 get_lr 方法,该方法用于计算当前轮次(last_epoch)下的学习率。具体来说,该方法首先判断当前轮次是否超过总的训练轮数(total_epoch),如果超过了,就表示开始使用 after_scheduler(如果有),并将每个参数的初始学习率乘以 multiplier 倍数。如果没有 after_scheduler,则直接返回每个参数的初始学习率乘以 multiplier 倍数。如果当前 multiplier 的值为 1.0,则学习率会随着训练的进行线性地递增。否则,学习率会按照一个类似于线性的函数逐渐递增,其中乘积因子 (self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.
阅读全文