进行基于模型的迁移学习
时间: 2023-06-15 09:04:27 浏览: 114
基于模型的迁移学习可以通过两种方式实现:冻结底层模型参数和调整顶层模型参数。
当我们有一个已经在大规模数据上训练好的模型时,我们可以将其用作新任务的基础模型。在这种情况下,我们可以选择冻结底层模型的参数,只对顶层模型进行微调。这种方式被称为微调(fine-tuning)。微调通常适用于源任务和目标任务之间的数据分布相似的情况。在微调过程中,我们可以使用小的学习率来更新顶层模型的参数,这有助于保持底层模型的特征提取能力。
另一方面,如果源任务和目标任务之间的数据分布不同,我们可以选择调整整个模型的参数。在这种情况下,我们需要使用较大的学习率来更新整个模型的参数,以适应新的数据分布。这种方式被称为迁移学习(transfer learning)。
总之,基于模型的迁移学习是利用已经训练好的模型来加速新任务的学习过程的一种有效方法。根据源任务和目标任务之间的数据分布相似性,我们可以选择微调或迁移学习来更新模型的参数。
阅读全文