perceptron homeworK.XISx中已含2200个本,具中包含2000个已知英别的砰本和200个未知类别的阵本。 1.使用第1个至第1500个样本训练分类感知机模型,得到一个最佳分类直线,写出直线方程的数学表达式;(手写数学表达式,上传图片) 2.用不同的颜色对第1个至第1500个样本表示的所属类别,同时绘制最佳分类直线;(上传图片) 3.使用第1问所得的分类模型,对使用第501个至第2000个样本讲行分类.计篇咸知机描型分米正确斑n 1501 4.使用第1问所得的分类模型,对使用第2001个至第2200个未知类别的样本进行分类。
时间: 2024-02-27 15:55:46 浏览: 141
mastering machine learning with scikit learn中文和英文两个版本
5星 · 资源好评率100%
很抱歉,作为一名 AI,我无法直接访问您的本地文件。不过,我可以为您提供相应的 Matlab 代码示例供您参考:
1. 训练分类感知机模型并得到最佳分类直线的数学表达式:
```matlab
% 加载数据
load('homework.mat');
X_train = data(1:1500,1:2);
y_train = data(1:1500,3);
% 训练感知机模型
w = zeros(size(X_train,2), 1);
b = 0;
learning_rate = 0.1;
for i = 1:size(X_train,1)
x = X_train(i,:)';
y = y_train(i);
if y * (w'*x + b) <= 0
w = w + learning_rate * y * x;
b = b + learning_rate * y;
end
end
% 最佳分类直线的数学表达式
syms x1 x2
f = -(w(1)*x1 + b) / w(2);
```
2. 绘制分类直线和样本点:
```matlab
% 加载数据
load('homework.mat');
X_train = data(1:1500,1:2);
y_train = data(1:1500,3);
% 训练感知机模型
w = zeros(size(X_train,2), 1);
b = 0;
learning_rate = 0.1;
for i = 1:size(X_train,1)
x = X_train(i,:)';
y = y_train(i);
if y * (w'*x + b) <= 0
w = w + learning_rate * y * x;
b = b + learning_rate * y;
end
end
% 绘制分类直线和样本点
x1 = -10:0.1:10;
x2 = subs(f, x1);
figure;
plot(X_train(y_train==1,1), X_train(y_train==1,2), 'r.', 'MarkerSize', 10);
hold on;
plot(X_train(y_train==-1,1), X_train(y_train==-1,2), 'b.', 'MarkerSize', 10);
plot(x1, x2, 'k', 'LineWidth', 2);
xlabel('x1');
ylabel('x2');
legend('Class 1', 'Class -1', 'Classification Line');
```
3. 对第501个至第2000个样本进行分类:
```matlab
% 加载数据
load('homework.mat');
X_train = data(1:1500, 1:2);
y_train = data(1:1500, 3);
X_test = data(501:2000, 1:2);
% 训练感知机模型
w = zeros(size(X_train,2), 1);
b = 0;
learning_rate = 0.1;
for i = 1:size(X_train,1)
x = X_train(i,:)';
y = y_train(i);
if y * (w'*x + b) <= 0
w = w + learning_rate * y * x;
b = b + learning_rate * y;
end
end
% 进行分类
y_predict = sign(X_test * w + b);
accuracy = sum(y_predict == data(501:2000, 3)) / size(X_test,1);
```
4. 对第2001个至第2200个未知类别的样本进行分类:
```matlab
% 加载数据
load('homework.mat');
X_train = data(1:1500, 1:2);
y_train = data(1:1500, 3);
X_unknown = data(2001:2200, 1:2);
% 训练感知机模型
w = zeros(size(X_train,2), 1);
b = 0;
learning_rate = 0.1;
for i = 1:size(X_train,1)
x = X_train(i,:)';
y = y_train(i);
if y * (w'*x + b) <= 0
w = w + learning_rate * y * x;
b = b + learning_rate * y;
end
end
% 进行分类
y_predict = sign(X_unknown * w + b);
```
阅读全文