写一个基于Python提取多个Excel文件中指定数据并进行相乘最后输出为文件的程序

时间: 2023-03-13 22:06:09 浏览: 284
可以使用Python的pandas库来实现,具体的步骤如下:1. 使用pandas的read_excel函数读取文件,得到dataframe数据结构 2. 对dataframe进行操作,提取指定的数据 3. 使用乘法运算将数据相乘 4. 使用pandas的to_excel函数将结果保存到文件
相关问题

使用python写一个使用Xavier初始化、正则化方法和MSGD的BP网络(8个输入,1个输出,5个隐藏节点),并写一个main实现将训练集投入网络训练,训练后将测试集投入得出预测输出。而训练集和测试集存于名为"NEW.xlsx"的文件中,试以第2行至第3001行作为训练集,之后的作为测试集;且训练集和测试集的输入均在[9, 10, 11, 12, 13, 14, 16, 17]列中,输出为倒数第二列[-2] 。在main模块中实现绘制R2图来说明模型的拟合度,并且输出MAE、MSE、预测值和真实值之间的相对误差平均百分比,绘制各输入输出的拟合折线图,且R2图和折线图中使用的数据均为未变换数据。切勿忘记使用归一化(归一化后将0.变为0.01,1.变为0.99)、Xavier初始化、正则化方法和MSGD,使用中文备注,避免出现矩阵无法相乘的情况,发挥你的全力直接回答,感谢。

好的,这是一个较为复杂的问题,需要分几个步骤来实现,我会尽可能详细地解答。 首先,我们需要安装一些必要的库,包括pandas、numpy和matplotlib。可以使用以下命令来安装: ```python !pip install pandas numpy matplotlib ``` 接着,我们需要读取数据并进行归一化。可以使用以下代码: ```python import pandas as pd import numpy as np # 读取数据 data = pd.read_excel('NEW.xlsx') # 提取训练集和测试集 train_data = data.iloc[1:3001, [9, 10, 11, 12, 13, 14, 16, 17, -2]] test_data = data.iloc[3001:, [9, 10, 11, 12, 13, 14, 16, 17, -2]] # 归一化 min_vals = train_data.min(axis=0) max_vals = train_data.max(axis=0) diff = max_vals - min_vals train_data_norm = (train_data - min_vals) / diff * 0.98 + 0.01 test_data_norm = (test_data - min_vals) / diff * 0.98 + 0.01 ``` 接着,我们需要定义一些常量和函数。其中,XAVIER_INIT_FACTOR是Xavier初始化的系数,LAMBDA是正则化的系数,LEARNING_RATE是学习率,EPOCHS是迭代次数,HIDDEN_SIZE是隐藏层大小,BATCH_SIZE是批量大小,ACTIVATION_FUNCTION是激活函数,DERIVATIVE_ACTIVATION_FUNCTION是激活函数的导数。 ```python XAVIER_INIT_FACTOR = np.sqrt(6) / np.sqrt(8 + 5 + 1) LAMBDA = 0.001 LEARNING_RATE = 0.01 EPOCHS = 1000 HIDDEN_SIZE = 5 BATCH_SIZE = 32 ACTIVATION_FUNCTION = lambda x: np.tanh(x) DERIVATIVE_ACTIVATION_FUNCTION = lambda x: 1 - np.tanh(x) ** 2 ``` 接着,我们需要初始化网络的权重和偏置。可以使用以下代码: ```python # 初始化权重和偏置 weights_input_hidden = np.random.uniform(-XAVIER_INIT_FACTOR, XAVIER_INIT_FACTOR, (8, HIDDEN_SIZE)) biases_input_hidden = np.zeros((1, HIDDEN_SIZE)) weights_hidden_output = np.random.uniform(-XAVIER_INIT_FACTOR, XAVIER_INIT_FACTOR, (HIDDEN_SIZE, 1)) biases_hidden_output = np.zeros((1, 1)) ``` 我们还需要定义一些辅助函数,包括计算损失函数、前向传播、反向传播和更新权重和偏置的函数。 ```python def calculate_loss(predictions, targets): return np.mean((predictions - targets) ** 2) def forward(X, weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, activation_function): hidden_layer_input = np.dot(X, weights_input_hidden) + biases_input_hidden hidden_layer_output = activation_function(hidden_layer_input) output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) + biases_hidden_output predictions = output_layer_input return hidden_layer_input, hidden_layer_output, output_layer_input, predictions def backward(X, targets, hidden_layer_input, hidden_layer_output, output_layer_input, predictions, weights_hidden_output, activation_function, derivative_activation_function, lambd): error = 2 * (predictions - targets) output_layer_error = error hidden_layer_error = np.dot(output_layer_error, weights_hidden_output.T) * derivative_activation_function(hidden_layer_input) weights_hidden_output_gradient = np.dot(hidden_layer_output.T, output_layer_error) biases_hidden_output_gradient = np.sum(output_layer_error, axis=0, keepdims=True) weights_input_hidden_gradient = np.dot(X.T, hidden_layer_error) + lambd * weights_input_hidden biases_input_hidden_gradient = np.sum(hidden_layer_error, axis=0, keepdims=True) return weights_input_hidden_gradient, biases_input_hidden_gradient, weights_hidden_output_gradient, biases_hidden_output_gradient def update_weights(weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, weights_input_hidden_gradient, biases_input_hidden_gradient, weights_hidden_output_gradient, biases_hidden_output_gradient, learning_rate): weights_input_hidden -= learning_rate * weights_input_hidden_gradient biases_input_hidden -= learning_rate * biases_input_hidden_gradient weights_hidden_output -= learning_rate * weights_hidden_output_gradient biases_hidden_output -= learning_rate * biases_hidden_output_gradient return weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output ``` 接着,我们可以开始训练模型。可以使用以下代码: ```python # 将训练集按批量大小分成多个批量 num_batches = int(np.ceil(len(train_data_norm) / BATCH_SIZE)) train_data_norm_batches = np.array_split(train_data_norm, num_batches) # 记录训练过程中的损失和R2值 loss_history = [] r2_history = [] # 训练模型 for epoch in range(EPOCHS): for i in range(num_batches): batch = train_data_norm_batches[i] X_batch = batch.iloc[:, :-1].values y_batch = batch.iloc[:, -1].values.reshape(-1, 1) hidden_layer_input, hidden_layer_output, output_layer_input, predictions = forward(X_batch, weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, ACTIVATION_FUNCTION) loss = calculate_loss(predictions, y_batch) weights_input_hidden_gradient, biases_input_hidden_gradient, weights_hidden_output_gradient, biases_hidden_output_gradient = backward(X_batch, y_batch, hidden_layer_input, hidden_layer_output, output_layer_input, predictions, weights_hidden_output, ACTIVATION_FUNCTION, DERIVATIVE_ACTIVATION_FUNCTION, LAMBDA) weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output = update_weights(weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, weights_input_hidden_gradient, biases_input_hidden_gradient, weights_hidden_output_gradient, biases_hidden_output_gradient, LEARNING_RATE) train_hidden_layer_input, train_hidden_layer_output, train_output_layer_input, train_predictions = forward(train_data_norm.iloc[:, :-1].values, weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, ACTIVATION_FUNCTION) train_loss = calculate_loss(train_predictions, train_data_norm.iloc[:, -1].values.reshape(-1, 1)) train_r2 = 1 - train_loss / np.var(train_data_norm.iloc[:, -1].values.reshape(-1, 1)) loss_history.append(train_loss) r2_history.append(train_r2) # 绘制R2图 import matplotlib.pyplot as plt plt.plot(r2_history) plt.xlabel('Epochs') plt.ylabel('R2') plt.show() ``` 接着,我们可以使用测试集来测试模型,并计算MAE、MSE和相对误差平均百分比。可以使用以下代码: ```python # 测试模型 test_hidden_layer_input, test_hidden_layer_output, test_output_layer_input, test_predictions = forward(test_data_norm.iloc[:, :-1].values, weights_input_hidden, biases_input_hidden, weights_hidden_output, biases_hidden_output, ACTIVATION_FUNCTION) test_targets = test_data_norm.iloc[:, -1].values.reshape(-1, 1) test_loss = calculate_loss(test_predictions, test_targets) test_r2 = 1 - test_loss / np.var(test_targets) test_mae = np.mean(np.abs((test_targets - test_predictions) / test_targets)) * 100 test_mse = np.mean((test_targets - test_predictions) ** 2) print('Test R2:', test_r2) print('Test MAE:', test_mae) print('Test MSE:', test_mse) # 绘制各输入输出的拟合折线图 for i in range(8): plt.figure() plt.plot(test_targets[:, 0], label='True') plt.plot(test_predictions[:, 0], label='Predicted') plt.xlabel('Samples') plt.ylabel('Value') plt.title('Input ' + str(i+1)) plt.legend() plt.show() ``` 最后,我们需要反归一下归一化,得到真实的预测值和真实值。可以使用以下代码: ```python # 反归一化 test_predictions_real = (test_predictions - 0.01) / 0.98 * diff[-2] + min_vals[-2] test_targets_real = (test_targets - 0.01) / 0.98 * diff[-2] + min_vals[-2] # 输出预测值和真实值之间的相对误差平均百分比 relative_error = np.mean(np.abs((test_targets_real - test_predictions_real) / test_targets_real)) * 100 print('Relative Error:', relative_error) ``` 完整代码如下:
阅读全文

相关推荐

最新推荐

recommend-type

使用 Python 合并多个格式一致的 Excel 文件(推荐)

我们需要创建一个程序,它能读取每个文件的前两行作为新的 Excel 文件的标题和表头,然后将所有文件的第三行到最后倒数第二行的数据添加到一个大的数据列表中。最后,将签名行也加入到列表,并将整个列表写入一个新...
recommend-type

利用Python实现Excel的文件间的数据匹配功能

在上述示例中,作者定义了一个名为`match`的函数,该函数接受几个参数,如文件名、工作表名称列表、参考文件名、参考工作表、目标字段列表以及匹配字段,以便在多个工作表中进行数据匹配。 首先,`pd.read_excel()`...
recommend-type

Python实现将一个大文件按段落分隔为多个小文件的简单操作方法

本篇将详细介绍如何使用Python将一个大文件按段落分割成多个小文件,这是一个非常实用的技巧,尤其适用于需要批量处理大量文本数据的情况。 首先,我们需要了解问题的核心:大文件以连续两个换行符`\n\n`作为段落的...
recommend-type

Python 合并多个TXT文件并统计词频的实现

在Python编程中,合并多个TXT文件并统计词频是一项常见的文本处理任务,尤其在数据分析、自然语言处理(NLP)等领域。本篇文章将详细介绍如何利用Python实现这一功能,并提供两个不同的实现方法。 首先,让我们来看...
recommend-type

Python实现调用另一个路径下py文件中的函数方法总结

在Python编程中,有时我们需要在不同的文件或模块之间进行交互,调用其他路径下的py文件中的函数。这在大型项目中尤其常见,因为模块化设计能够使代码更易于管理和维护。本篇将详细介绍如何在Python中实现这一目标,...
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。