图卷积神经网络要求每一层之间都加入Res残差连接,要求有10层图卷积层,并且完成对cora数据集的训练与测试,写一段python代码
时间: 2024-05-13 09:19:48 浏览: 118
cora数据集、含图卷积训练代码
5星 · 资源好评率100%
以下是使用PyTorch实现的代码,使用了pytorch_geometric库来加载和处理Cora数据集,并使用GCNConv实现了10层图卷积神经网络,并在每一层之间添加了Res残差连接:
```
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
# Load Cora dataset
dataset = Planetoid(root='data/Cora', name='Cora')
data = dataset[0]
# Define graph convolutional neural network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(dataset.num_features, 16)
self.conv2 = GCNConv(16, 16)
self.conv3 = GCNConv(16, 16)
self.conv4 = GCNConv(16, 16)
self.conv5 = GCNConv(16, 16)
self.conv6 = GCNConv(16, 16)
self.conv7 = GCNConv(16, 16)
self.conv8 = GCNConv(16, 16)
self.conv9 = GCNConv(16, 16)
self.conv10 = GCNConv(16, dataset.num_classes)
def forward(self, x, edge_index):
# Apply first convolutional layer
x1 = F.relu(self.conv1(x, edge_index))
# Apply second convolutional layer and add Res connection
x2 = F.relu(self.conv2(x1, edge_index) + x1)
# Apply third convolutional layer and add Res connection
x3 = F.relu(self.conv3(x2, edge_index) + x2)
# Apply fourth convolutional layer and add Res connection
x4 = F.relu(self.conv4(x3, edge_index) + x3)
# Apply fifth convolutional layer and add Res connection
x5 = F.relu(self.conv5(x4, edge_index) + x4)
# Apply sixth convolutional layer and add Res connection
x6 = F.relu(self.conv6(x5, edge_index) + x5)
# Apply seventh convolutional layer and add Res connection
x7 = F.relu(self.conv7(x6, edge_index) + x6)
# Apply eighth convolutional layer and add Res connection
x8 = F.relu(self.conv8(x7, edge_index) + x7)
# Apply ninth convolutional layer and add Res connection
x9 = F.relu(self.conv9(x8, edge_index) + x8)
# Apply final convolutional layer and return output
x10 = self.conv10(x9, edge_index)
return F.log_softmax(x10, dim=1)
# Train and test the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
def train():
model.train()
optimizer.zero_grad()
out = model(data.x.to(device), data.edge_index.to(device))
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
def test():
model.eval()
out = model(data.x.to(device), data.edge_index.to(device))
pred = out.argmax(dim=1)
correct = float(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct / data.test_mask.sum().item()
return acc
for epoch in range(1, 201):
loss = train()
acc = test()
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Test Acc: {acc:.4f}')
```
请注意,对于Res连接,我们在每一层中将输出与上一层的输入相加。在这个例子中,我们使用了ReLU作为激活函数,并使用Adam优化器进行训练。
阅读全文