pytorch 框架为resnet50网络架构添加空间注意力机制
时间: 2023-11-03 17:04:37 浏览: 129
空间注意力机制是一种用于加强模型对图像空间信息的关注的方法。在pytorch框架下,可以通过以下步骤为resnet50网络架构添加空间注意力机制:
1. 导入必要的库和模块:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义空间注意力模块:
```
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_pool = torch.mean(x, dim=1, keepdim=True)
max_pool, _ = torch.max(x, dim=1, keepdim=True)
pool = torch.cat([avg_pool, max_pool], dim=1)
pool = self.conv(pool)
pool = self.sigmoid(pool)
return x * pool
```
该模块包含一个卷积层和一个sigmoid激活函数,用于计算特征图的空间注意力权重,并将其与原始特征图相乘。
3. 定义修改后的resnet50网络:
```
class ResNet50_SpatialAttention(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50_SpatialAttention, self).__init__()
# ResNet50 backbone
self.backbone = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.Sequential(*list(torchvision.models.resnet50(pretrained=True).children())[4:-2])
)
# Spatial attention module
self.spatial_attention = SpatialAttention()
# Classification layer
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.backbone(x)
x = self.spatial_attention(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
该网络首先使用resnet50的前几层作为backbone,然后将特征图输入到空间注意力模块中,最后进行全局平均池化和分类。
4. 测试网络性能:
```
model = ResNet50_SpatialAttention()
x = torch.randn(1, 3, 224, 224)
y = model(x)
print(y.shape)
```
运行结果为:
```
torch.Size([1, 1000])
```
说明添加了空间注意力机制的resnet50网络可以正常工作,并输出大小为1000的分类结果。
阅读全文