基于EM算法的IS散度NMF算法的matlab代码
时间: 2023-11-10 17:14:30 浏览: 103
以下是基于EM算法的IS散度NMF算法的matlab代码示例:
```matlab
function [W, H] = is_nmf_em(V, r, max_iter)
% V: 数据矩阵,r: 分解的秩,max_iter: 最大迭代次数
% W: 基矩阵,H: 系数矩阵
% 初始化W和H
W = rand(size(V, 1), r);
H = rand(r, size(V, 2));
% 迭代更新W和H
for i = 1:max_iter
% 更新H
V_hat = W * H;
H = H .* (W' * (V ./ V_hat)) ./ (W' * ones(size(V)));
% 更新W
V_hat = W * H;
W = W .* ((V ./ V_hat) * H') ./ (ones(size(V, 1)) * H');
end
end
```
该代码实现了基于EM算法的IS散度NMF算法,输入参数为数据矩阵V、分解秩r和最大迭代次数max_iter,输出结果为基矩阵W和系数矩阵H。在迭代更新W和H时,分别使用了V和V_hat的IS散度作为损失函数。
相关问题
IS散度的NMF算法matlab代码
以下是IS散度的NMF算法的MATLAB代码:
```matlab
function [W,H] = nmf_isdiv(X,k,max_iter)
% NMF using IS divergence
% X: input matrix
% k: number of basis vectors
% max_iter: maximum number of iterations
% W: basis matrix
% H: coefficient matrix
% initialize W and H with random values
[n,m] = size(X);
W = rand(n,k);
H = rand(k,m);
% set small value for avoiding division by zero
eps = 1e-16;
% iterate until convergence or max_iter
for iter = 1:max_iter
% update H
for j = 1:m
H(:,j) = H(:,j) .* (W' * (X(:,j) ./ (W * H(:,j) + eps))) ./ sum(W,1)';
end
% update W
for i = 1:n
W(i,:) = W(i,:) .* ((X(i,:) ./ (W(i,:) * H + eps)) * H') ./ sum(H,2)';
end
% calculate IS divergence
div = sum(sum(X .* log(X./(W*H+eps)) - X + W*H));
% check for convergence
if iter > 1 && abs(div-prev_div) < 1e-6
break
end
prev_div = div;
end
end
```
使用方法:
假设X为输入矩阵,k为基向量的数量,max_iter为最大迭代次数。调用函数nmf_isdiv(X,k,max_iter)即可进行IS散度的NMF算法计算,返回值为W和H矩阵。
IS散度的NMF/MU算法matlab代码
以下是基于IS散度的NMF/MU算法的Matlab代码:
```
function [W,H] = nmf_is(X,r,max_iter)
% NMF based on IS divergence
% Input:
% X: data matrix (n x m)
% r: number of basis vectors
% max_iter: maximum number of iterations
% Output:
% W: basis matrix (n x r)
% H: activation matrix (r x m)
% Reference:
% Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects
% by non-negative matrix factorization. Nature, 401(6755), 788-791.
% Initialize W and H
[n,m] = size(X);
W = rand(n,r);
H = rand(r,m);
% Calculate initial objective value
obj = sum(sum(X.*log(X./(W*H)) - X + W*H));
% Perform multiplicative updates
for iter = 1:max_iter
% Update H
H = H.*(W'*((X./(W*H)).^2))./(W'*X);
% Update W
W = W.*(((X./(W*H)).^2)*H')./(W*(H*H'));
% Calculate objective value
new_obj = sum(sum(X.*log(X./(W*H)) - X + W*H));
% Check convergence
if abs(new_obj - obj) < 1e-6
break;
end
obj = new_obj;
end
end
```
其中,`X` 是输入数据矩阵,`r` 是要分解的基向量数量, `max_iter` 是最大迭代次数。函数返回基矩阵 `W` 和激活矩阵 `H`。算法的具体实现采用了基于IS散度的NMF/MU算法,参考文献为Lee和Seung在Nature上发表的论文:Learning the parts of objects by non-negative matrix factorization。
阅读全文