请编写一个基于keras的深度残差收缩网络,实现对格式为csv的三维时序信号去噪,并实现现去噪的可视化和将去噪后的数据以csv格式保存
时间: 2023-06-16 14:03:13 浏览: 88
基于深度残差学习的乘性噪声去噪方法
以下是一个基于Keras的深度残差收缩网络,用于对格式为csv的三维时序信号去噪:
```python
import numpy as np
import pandas as pd
from keras.models import Model
from keras.layers import Input, Conv1D, MaxPooling1D, UpSampling1D, Concatenate, BatchNormalization, Activation, Add
def residual_block(x, filters, kernel_size, dilation_rate):
r = Conv1D(filters=filters, kernel_size=1)(x)
r = BatchNormalization()(r)
r = Activation('relu')(r)
r = Conv1D(filters=filters, kernel_size=kernel_size, padding='same', dilation_rate=dilation_rate)(r)
r = BatchNormalization()(r)
r = Activation('relu')(r)
r = Conv1D(filters=filters, kernel_size=1)(r)
r = BatchNormalization()(r)
x = Conv1D(filters=filters, kernel_size=1)(x)
x = Add()([x, r])
return x
def build_model(input_shape):
inputs = Input(shape=input_shape)
x = Conv1D(filters=64, kernel_size=3, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
for i in range(4):
for j in range(2):
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=2**j)
x = Conv1D(filters=1, kernel_size=3, padding='same')(x)
x = BatchNormalization()(x)
outputs = Activation('linear')(x)
model = Model(inputs=inputs, outputs=outputs)
return model
def plot_data(data, name):
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 4))
ax.plot(data)
ax.set_title(name)
ax.set_xlabel('Time step')
ax.set_ylabel('Signal value')
plt.show()
def load_data(filename):
data = pd.read_csv(filename, header=None).values
return data
def save_data(data, filename):
pd.DataFrame(data).to_csv(filename, header=None, index=None)
def main():
# Load data
data = load_data('data.csv')
plot_data(data, 'Original data')
# Add noise
noise = np.random.normal(0, 0.1, size=data.shape)
noisy_data = data + noise
plot_data(noisy_data, 'Noisy data')
# Train model
input_shape = noisy_data.shape[1:]
model = build_model(input_shape)
model.compile(optimizer='adam', loss='mse')
model.fit(noisy_data, data, epochs=50, batch_size=32)
# Denoise data
denoised_data = model.predict(noisy_data)
plot_data(denoised_data, 'Denoised data')
# Save denoised data
save_data(denoised_data, 'denoised_data.csv')
if __name__ == '__main__':
main()
```
该模型包括卷积层、残差块、批量归一化层和激活层。训练之前,我们首先将原始数据加载到内存中,并添加高斯噪声。然后,我们使用带有均方误差损失的 Adam 优化器来训练模型。最后,我们使用训练的模型对噪声数据进行去噪,并将结果保存为 CSV 文件。
阅读全文