def MSRCR(img, sigma_list, G, b, alpha, beta, low_clip, high_clip):
时间: 2024-05-31 17:14:37 浏览: 30
这是一个函数定义,可能用于多尺度对比度增强(Multi-Scale Retinex with Color Restoration)的算法实现。该函数接受以下参数:
- img:待处理的图像
- sigma_list:高斯核的标准差列表,用于进行多尺度分解
- G:控制增强的非线性函数
- b:控制增强的非线性函数
- alpha:控制颜色恢复的参数
- beta:控制颜色恢复的参数
- low_clip:输出像素值的下限裁剪
- high_clip:输出像素值的上限裁剪
该函数的具体实现可能需要结合算法原理进行理解。
相关问题
参数应该写多少def MSRCR(img, sigma_list, G, b, alpha, beta, low_clip, high_clip): img = np.float64(img) + 1.0 img_retinex = multiScaleRetinex(img, sigma_list) img_color = colorRestoration(img, alpha, beta) img_msrcr = G * (img_retinex * img_color + b) for i in range(img_msrcr.shape[2]): img_msrcr[:, :, i] = (img_msrcr[:, :, i] - np.min(img_msrcr[:, :, i])) / \ (np.max(img_msrcr[:, :, i]) - np.min(img_msrcr[:, :, i])) * \ 255 img_msrcr = np.uint8(np.minimum(np.maximum(img_msrcr, 0), 255)) img_msrcr = simplestColorBalance(img_msrcr, low_clip, high_clip) return img_msrcr
这个函数需要的参数包括:
- img: 需要进行 MSRCR 的图像,类型为 numpy 数组。
- sigma_list: multiScaleRetinex 函数中使用的高斯核的标准差列表,类型为列表。
- G: 调整图像对比度的参数,类型为 float。
- b: 调整图像亮度的参数,类型为 float。
- alpha: colorRestoration 函数中使用的参数,类型为 float。
- beta: colorRestoration 函数中使用的参数,类型为 float。
- low_clip: simplestColorBalance 函数中使用的参数,控制最暗像素的值,类型为 float。
- high_clip: simplestColorBalance 函数中使用的参数,控制最亮像素的值,类型为 float。
因此,定义的函数应该为:
```python
def MSRCR(img, sigma_list, G, b, alpha, beta, low_clip, high_clip):
img = np.float64(img) + 1.0
img_retinex = multiScaleRetinex(img, sigma_list)
img_color = colorRestoration(img, alpha, beta)
img_msrcr = G * (img_retinex * img_color + b)
for i in range(img_msrcr.shape[2]):
img_msrcr[:, :, i] = (img_msrcr[:, :, i] - np.min(img_msrcr[:, :, i])) / \
(np.max(img_msrcr[:, :, i]) - np.min(img_msrcr[:, :, i])) * \
255
img_msrcr = np.uint8(np.minimum(np.maximum(img_msrcr, 0), 255))
img_msrcr = simplestColorBalance(img_msrcr, low_clip, high_clip)
return img_msrcr
```
阅读全文