ENTRYPOINT ['/opt/apache/docker-entrypoint.sh']的作用
时间: 2024-01-25 16:02:58 浏览: 238
ENTRYPOINT ['/opt/apache/docker-entrypoint.sh']是Dockerfile文件中的一个命令,它是用来指定Docker容器启动时的默认执行命令。在这个例子中,它指定了容器启动时执行的脚本文件为/opt/apache/docker-entrypoint.sh。这个脚本文件主要是用于设置容器的初始状态、启动服务等。通常情况下,ENTRYPOINT命令会与CMD命令一起使用,以提供一个容器的默认行为。
相关问题
docker run -t --entrypoint=/bin/bash -v /opt/webex/mct/docker/docker_launcher_ci_30280.yaml:/opt/config.yaml --rm dockerhub.cisco.com/webexmeetingsmedia-docker/calliopedevelopers/homer-health-monitor:bionic-dev-50 -c 'python single_check.py --log_level=warn --force_agent=wsjcm.wsjcm.*,wfram.wfram.*' 这段是什么意思?
这是一个docker run命令,其作用是启动一个Docker容器,并在容器中运行指定的命令。
参数解释如下:
- -t:表示在容器中分配一个伪终端(pseudo-TTY),以便我们可以在容器中与命令进行交互。
- --entrypoint=/bin/bash:表示将容器的入口点(entrypoint)设置为/bin/bash,即在容器启动后直接进入bash shell。
- -v /opt/webex/mct/docker/docker_launcher_ci_30280.yaml:/opt/config.yaml:表示将本地文件系统中的/opt/webex/mct/docker/docker_launcher_ci_30280.yaml文件挂载到容器内的/opt/config.yaml文件上,使得容器内的应用程序可以访问本地文件系统中的配置文件。
- --rm:表示容器停止运行后自动删除容器。
- dockerhub.cisco.com/webexmeetingsmedia-docker/calliopedevelopers/homer-health-monitor:bionic-dev-50:表示要启动的Docker镜像的名称和标签。
- -c 'python single_check.py --log_level=warn --force_agent=wsjcm.wsjcm.*,wfram.wfram.*':表示在容器内运行的命令,即以python程序运行single_check.py脚本,并传入参数--log_level=warn和--force_agent=wsjcm.wsjcm.*,wfram.wfram.*。
综上,这个命令的作用是启动一个Docker容器,在容器内执行指定的python脚本,并使用本地文件系统中的配置文件来配置程序运行参数。
帮我写一份docker-compose.yml,内容是包含大数据相关容器
### 回答1:
当涉及到大数据应用程序的容器化时,通常需要使用多个容器来构建整个系统。以下是一个示例`docker-compose.yml`文件,其中包含一些常见的大数据相关容器:
```yaml
version: '3'
services:
namenode:
image: sequenceiq/hadoop-docker:2.7.1
container_name: namenode
ports:
- "50070:50070"
volumes:
- ./hadoop-namenode:/hadoop/dfs/name
command: /etc/bootstrap.sh -d namenode
datanode:
image: sequenceiq/hadoop-docker:2.7.1
container_name: datanode
volumes:
- ./hadoop-datanode:/hadoop/dfs/data
environment:
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
command: /etc/bootstrap.sh -d datanode
resourcemanager:
image: sequenceiq/hadoop-docker:2.7.1
container_name: resourcemanager
ports:
- "8088:8088"
environment:
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
- YARN_CONF_yarn_resourcemanager_webapp_address=resourcemanager:8088
- YARN_CONF_yarn_resourcemanager_address=resourcemanager:8032
command: /etc/bootstrap.sh -d resourcemanager
nodemanager:
image: sequenceiq/hadoop-docker:2.7.1
container_name: nodemanager
environment:
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
command: /etc/bootstrap.sh -d nodemanager
historyserver:
image: sequenceiq/hadoop-docker:2.7.1
container_name: historyserver
environment:
- CORE_CONF_fs_defaultFS=hdfs://namenode:8020
- YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
command: /etc/bootstrap.sh -d historyserver
spark-master:
image: bde2020/spark-master:3.1.1-hadoop3.2
container_name: spark-master
ports:
- "8080:8080"
environment:
- SPARK_MODE=master
command: /bin/bash entrypoint.sh
spark-worker:
image: bde2020/spark-worker:3.1.1-hadoop3.2
container_name: spark-worker
environment:
- SPARK_MODE=worker
- SPARK_MASTER_URL=spark://spark-master:7077
command: /bin/bash entrypoint.sh
kafka:
image: wurstmeister/kafka:2.12-2.1.0
container_name: kafka
ports:
- "9092:9092"
environment:
- KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092
- KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092
- KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
depends_on:
- zookeeper
zookeeper:
image: wurstmeister/zookeeper:3.4.6
container_name: zookeeper
ports:
- "2181:2181"
### 回答2:
以下是一个示例的docker-compose.yml文件,包含了一些常见的大数据相关容器:
```
version: '3'
services:
hadoop:
image: sequenceiq/hadoop-docker:2.7.1
container_name: hadoop
ports:
- "50070:50070"
- "8088:8088"
volumes:
- ./data:/data
spark:
image: sequenceiq/spark:1.6.0
container_name: spark
environment:
- MASTER=spark://hadoop:7077
volumes:
- ./data:/data
hbase:
image: harisekhon/hbase:1.2
container_name: hbase
environment:
- HBASE_CONF_DIR=/opt/hbase/conf
- CLUSTER_DNS=<YOUR_HBASE_DNS>
volumes:
- ./hbase/conf:/opt/hbase/conf
- ./hbase/data:/opt/hbase/data
kafka:
image: wurstmeister/kafka:2.12-2.3.0
container_name: kafka
ports:
- "9092:9092"
environment:
- KAFKA_ADVERTISED_HOST_NAME=localhost
- KAFKA_ADVERTISED_PORT=9092
- KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
zookeeper:
image: wurstmeister/zookeeper:latest
container_name: zookeeper
ports:
- "2181:2181"
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:7.4.2
container_name: elasticsearch
ports:
- "9200:9200"
environment:
- discovery.type=single-node
kibana:
image: docker.elastic.co/kibana/kibana:7.4.2
container_name: kibana
ports:
- "5601:5601"
environment:
- ELASTICSEARCH_HOSTS=http://elasticsearch:9200
```
这个docker-compose.yml文件中包含了几个大数据相关的容器:
1. Hadoop容器:使用sequenceiq/hadoop-docker镜像,可以通过端口50070访问Hadoop的Web界面,端口8088访问YARN资源管理器。数据目录映射到宿主机的./data目录。
2. Spark容器:使用sequenceiq/spark镜像,设置环境变量MASTER为spark://hadoop:7077来连接Hadoop集群。数据目录同样映射到宿主机的./data目录。
3. HBase容器:使用harisekhon/hbase镜像,将宿主机上的./hbase/conf目录映射到HBase的配置目录,将./hbase/data映射到HBase的数据目录。需要将`<YOUR_HBASE_DNS>`替换为实际的HBase DNS。
4. Kafka容器:使用wurstmeister/kafka镜像,将宿主机的端口9092映射到Kafka容器的9092端口。设置环境变量KAFKA_ADVERTISED_HOST_NAME和KAFKA_ADVERTISED_PORT以便其他容器可以连接到Kafka。
5. ZooKeeper容器:使用wurstmeister/zookeeper镜像,将宿主机的端口2181映射到ZooKeeper容器的2181端口。
6. Elasticsearch容器:使用docker.elastic.co/elasticsearch镜像,将宿主机的端口9200映射到Elasticsearch容器的9200端口。
7. Kibana容器:使用docker.elastic.co/kibana镜像,将宿主机的端口5601映射到Kibana容器的5601端口,并设置ELASTICSEARCH_HOSTS环境变量以连接到Elasticsearch。
你可以将以上内容保存为docker-compose.yml文件,并在包含该文件的目录中运行`docker-compose up`命令以启动所有容器。
### 回答3:
下面是一个简单的docker-compose.yml文件示例,其中包含了几个常用的大数据相关容器:
version: '3'
services:
namenode:
image: hadoop-namenode:latest
ports:
- "9870:9870"
volumes:
- namenode_data:/hadoop/dfs/name
datanode:
image: hadoop-datanode:latest
ports:
- "9864:9864"
volumes:
- datanode_data:/hadoop/dfs/data
resourcemanager:
image: hadoop-resourcemanager:latest
ports:
- "8088:8088"
nodemanager:
image: hadoop-nodemanager:latest
historyserver:
image: hadoop-historyserver:latest
ports:
- "8188:8188"
sparkmaster:
image: spark-master:latest
ports:
- "8080:8080"
sparkworker:
image: spark-worker:latest
environment:
- SPARK_MASTER=spark://sparkmaster:7077
elasticsearch:
image: elasticsearch:latest
ports:
- "9200:9200"
- "9300:9300"
volumes:
- elasticsearch_data:/usr/share/elasticsearch/data
volumes:
namenode_data:
datanode_data:
elasticsearch_data:
该docker-compose.yml文件定义了以下服务:
- 一个Hadoop的NameNode,使用自定义的"Dockerfile"构建,共享"Hadoop/dfs/name"目录。
- 一个Hadoop的DataNode,使用自定义的"Dockerfile"构建,共享"Hadoop/dfs/data"目录。
- 一个Hadoop的ResourceManager,使用自定义的"Dockerfile"构建。
- 一个Hadoop的NodeManager,使用自定义的"Dockerfile"构建。
- 一个Hadoop的HistoryServer,使用自定义的"Dockerfile"构建。
- 一个Spark的Master节点,使用自定义的"Dockerfile"构建。
- 一个Spark的Worker节点,使用自定义的"Dockerfile"构建,并指定Master节点的地址。
- 一个Elasticsearch节点,使用"elasticsearch:latest"镜像。
这些容器共享了一些端口用于服务的访问,并使用卷来存储持久化数据。
请根据实际需求对上述代码进行修改。
阅读全文