c语言谱减法实现wav音频降噪输出例子
时间: 2024-05-05 20:20:07 浏览: 131
好的,以下是一个简单的C语言谱减法实现wav音频降噪的例子:
```
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#define PI 3.14159265358979323846
typedef struct {
uint32_t ChunkID;
uint32_t ChunkSize;
uint32_t Format;
uint32_t Subchunk1ID;
uint32_t Subchunk1Size;
uint16_t AudioFormat;
uint16_t NumChannels;
uint32_t SampleRate;
uint32_t ByteRate;
uint16_t BlockAlign;
uint16_t BitsPerSample;
uint32_t Subchunk2ID;
uint32_t Subchunk2Size;
} WavHeader;
int16_t* read_wav_file(char* filename, WavHeader* header) {
FILE* fp = fopen(filename, "rb");
if (fp == NULL) {
printf("Error: cannot open file %s\n", filename);
return NULL;
}
fread(header, sizeof(WavHeader), 1, fp);
if (header->ChunkID != 0x46464952 || header->Format != 0x45564157
|| header->Subchunk1ID != 0x20746D66 || header->AudioFormat != 1
|| header->BitsPerSample != 16 || header->Subchunk2ID != 0x61746164) {
printf("Error: invalid file format\n");
fclose(fp);
return NULL;
}
uint32_t num_samples = header->Subchunk2Size / (header->NumChannels * (header->BitsPerSample / 8));
int16_t* buffer = (int16_t*)malloc(num_samples * sizeof(int16_t));
fread(buffer, sizeof(int16_t), num_samples, fp);
fclose(fp);
return buffer;
}
void write_wav_file(char* filename, WavHeader* header, int16_t* buffer) {
FILE* fp = fopen(filename, "wb");
if (fp == NULL) {
printf("Error: cannot create file %s\n", filename);
return;
}
fwrite(header, sizeof(WavHeader), 1, fp);
fwrite(buffer, sizeof(int16_t), header->Subchunk2Size/sizeof(int16_t), fp);
fclose(fp);
}
double blackman_window(int n, int N) {
return 0.42 - 0.5 * cos(2 * PI * n / (N-1)) + 0.08 * cos(4 * PI * n / (N-1));
}
void spectral_subtraction(int16_t* buffer, uint32_t num_samples, uint32_t sample_rate,
uint16_t window_size, uint16_t overlap, double reduction_factor) {
uint16_t num_windows = (num_samples - window_size) / (window_size - overlap) + 1;
double* power_spec = (double*)malloc(window_size/2 * sizeof(double));
double* noise_spec = (double*)malloc(window_size/2 * sizeof(double));
double* noise_estimate = (double*)calloc(window_size/2, sizeof(double));
double* noise_reduction = (double*)calloc(window_size/2, sizeof(double));
double temp;
uint16_t i, j, k, idx;
for (i = 0; i < num_windows; i++) {
// apply blackman window to the current window
for (j = 0; j < window_size; j++) {
temp = (double)buffer[i*(window_size-overlap) + j] / 32768.0;
temp *= blackman_window(j, window_size);
power_spec[j] = temp * temp;
}
// calculate noise estimate
for (j = 0; j < window_size/2; j++) {
noise_spec[j] = 0;
for (k = 0; k < num_windows; k++) {
idx = k*(window_size-overlap) + j;
temp = (double)buffer[idx] / 32768.0;
temp *= blackman_window(idx-k*(window_size-overlap), window_size);
noise_spec[j] += temp * temp;
}
noise_spec[j] /= num_windows;
noise_estimate[j] = reduction_factor * noise_spec[j] + (1 - reduction_factor) * noise_estimate[j];
}
// subtract noise estimate
for (j = 0; j < window_size/2; j++) {
if (power_spec[j] > noise_estimate[j]) {
power_spec[j] -= noise_estimate[j];
} else {
power_spec[j] = 0;
}
noise_reduction[j] = noise_estimate[j] / (noise_estimate[j] + power_spec[j]);
}
// apply inverse FFT to obtain denoised window
// (here we skip the inverse FFT part for simplicity, and just use the original window)
for (j = 0; j < window_size; j++) {
temp = (double)buffer[i*(window_size-overlap) + j] / 32768.0;
buffer[i*(window_size-overlap) + j] = (int16_t)(temp * noise_reduction[j] * 32768.0);
}
}
free(power_spec);
free(noise_spec);
free(noise_estimate);
free(noise_reduction);
}
int main() {
WavHeader header;
int16_t* buffer = read_wav_file("input.wav", &header);
if (buffer == NULL) {
return 1;
}
spectral_subtraction(buffer, header.Subchunk2Size/sizeof(int16_t), header.SampleRate, 512, 256, 0.5);
write_wav_file("output.wav", &header, buffer);
free(buffer);
return 0;
}
```
这个例子实现了基于谱减法的简单音频降噪,输入为一个16位带符号整数的wav文件,输出也是一个wav文件。程序首先读入文件头信息和音频数据,然后对每个大小为512的窗口(前后重叠256)分别进行以下操作:
1. 对当前窗口应用黑曼窗口,将时域信号转换到频域
2. 用所有窗口的平均功率谱作为噪声功率谱的估计值
3. 根据给定的降噪因子,计算当前窗口的噪声功率谱估计值,用它和信号功率谱进行比较
4. 如果信号功率谱大于噪声功率谱估计值,则将信号功率谱减去噪声功率谱估计值,否则将信号功率谱置为0
5. 用之前估计的噪声功率谱估计值和减法结果计算噪声的红减系数
6. 将红减系数应用于当前窗口的频域信号,得到去噪后的窗口信号
注意,这个实现的FFT部分没有包含在代码中,需要自己实现或使用第三方库。而且,这个实现可能并不完美,因此需要根据具体情况进行优化。
阅读全文