生成一个generative model的代码用于二分类 
时间: 2023-05-31 20:02:37 浏览: 27
以下是一个简单的基于PyTorch的生成模型的二分类代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
input_size = 10
hidden_size = 50
output_size = 1
generator = Generator(input_size, hidden_size, output_size)
# Binary cross entropy loss function
loss_fn = nn.BCELoss()
# Optimizer
optimizer = optim.Adam(generator.parameters(), lr=0.01)
# Generate some random input data
X = torch.randn(1000, input_size)
# Generate some random output labels
Y = torch.FloatTensor(np.random.randint(2, size=(1000, 1)))
# Train the generator
for epoch in range(100):
# Zero the gradients
optimizer.zero_grad()
# Generate output predictions
Y_pred = generator(X)
# Compute the loss
loss = loss_fn(Y_pred, Y)
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
# Print the loss
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item()))
```
在这个例子中,我们使用了一个具有三个线性层和ReLU和Sigmoid激活函数的生成器模型。我们使用二元交叉熵损失函数和Adam优化器来训练模型。我们随机生成了一些输入数据并使用随机标签来训练生成器。在每个时期,我们计算损失,反向传播损失并更新权重。
相关推荐


















