def test_model(model, test_loader): #定义测试模型 correct = 0 #将变量correct赋值为0 total = 0 #将变量total赋值为0 with torch.no_grad(): #减少在计算过程中的计算时间 for data in test_loader: #date多批次执行加载集里面的元素 images, labels = data #将images和labels两个变量 #images是图像数据,labels是测试标签 outputs = model(images)#将images数据输入模型计算后的预测结果输出 _, predicted = torch.max(outputs.data, 1)#找到每个测试样本的预测类型并储存在predicted变量中 total += labels.size(0)#将迭代中总共的样本数量储存在total变量里 correct += (predicted == labels).sum().item()#将预测正确的样本数量储存在correct变量里 print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))#计算模型正确预测的准确率 if __name__ == '__main__':

时间: 2024-04-01 19:33:43 浏览: 17
这段代码是用来测试一个机器学习模型在测试集上的准确率的。该函数接受两个参数:一个是要测试的模型,另一个是测试集数据。在这个函数中,模型会对测试集中的每个样本进行预测,并统计预测正确的样本数量。最后,计算模型在测试集上的准确率并输出。这段代码应该是在一个Python文件中,当该文件作为主程序运行时,会执行该函数。
相关问题

# 定义测试函数 def test(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for index,adj,features,labels in test_loader: #adj, features, labels = adj.to(device), features.to(device), labels.to(device) output, _, _ = model(features) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Accuracy: {:.2f}%'.format(acc))

这段代码是一个 PyTorch 模型的测试函数,用于在测试集上评估模型的准确率。函数接受三个参数: - `model`:PyTorch 模型对象 - `test_loader`:测试数据集的数据加载器 - `device`:模型所在的设备,可以是 CPU 或 GPU 下面是这个函数的详细说明: 1. `model.eval()`:将模型设置为评估模式,这会关闭一些训练时使用的特定功能,例如 dropout 和 batch normalization。 2. `correct = 0` 和 `total = 0`:初始化正确预测的数量和测试样本的总数量。 3. `with torch.no_grad():`:在评估模式下,我们不需要计算梯度,因此使用 `torch.no_grad()` 上下文管理器来关闭梯度计算。 4. `for index,adj,features,labels in test_loader:`:迭代测试集数据加载器,加载测试数据的节点特征、邻接矩阵和标签。 5. `output, _, _ = model(features)`:使用模型预测节点标签,不需要输出中间层的表示或 attention 分数,因此用下划线 `_` 忽略这些值。 6. `_, predicted = torch.max(output.data, 1)`:从输出中找到每个节点标签的预测值,并计算预测的类别。 7. `total += labels.size(0)` 和 `correct += (predicted == labels).sum().item()`:更新测试样本的总数和正确预测的数量。 8. `acc = 100 * correct / total`:计算测试集准确率。 9. `print('Accuracy: {:.2f}%'.format(acc))`:打印测试集准确率。 这个测试函数可以用于对训练好的图神经网络模型进行测试,得到模型在测试集上的准确率。

def train_selected_model(): # global model_var # selected_model = model_var.get() # if selected_model == "线性回归": # train_linear_regression() # elif selected_model == "决策树": # train_decision_tree() # elif selected_model == "随机森林": # train_random_forest() 解释每一句代码含义

这段代码定义了一个名为`train_selected_model()`的函数,其功能是根据用户选择的模型类型训练相应的模型。具体来说: - `global model_var`:声明`model_var`为全局变量。 - `selected_model = model_var.get()`:获取用户选择的模型类型,并将其赋值给变量`selected_model`。 - `if selected_model == "线性回归":`:如果用户选择的模型类型为线性回归,则执行下一行代码。 - `train_linear_regression()`:调用`train_linear_regression()`函数,训练线性回归模型。 - `elif selected_model == "决策树":`:如果用户选择的模型类型为决策树,则执行下一行代码。 - `train_decision_tree()`:调用`train_decision_tree()`函数,训练决策树模型。 - `elif selected_model == "随机森林":`:如果用户选择的模型类型为随机森林,则执行下一行代码。 - `train_random_forest()`:调用`train_random_forest()`函数,训练随机森林模型。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable from torchvision.datasets import ImageFolder from torchvision.transforms import transforms from torch.utils.data import DataLoader # 定义超参数 num_epochs = 10 batch_size = 32 learning_rate = 0.001 # 定义数据转换方式 transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # 加载数据集 train_dataset = ImageFolder(root='./ChineseStyle/train/', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = ImageFolder(root='./ChineseStyle/test/', transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 定义卷积神经网络结构 class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=32, kernel_size=5, stride=1, padding=2) self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128) self.fc2 = nn.Linear(in_features=128, out_features=15) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化卷积神经网络 net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将输入和标签转换为变量 images = Variable(images) labels = Variable(labels) # 将梯度清零 optimizer.zero_grad() # 向前传递 outputs = net(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播和优化 loss.backward() optimizer.step() # 打印统计信息 if (i + 1) % 100 == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item())) # 测试模型 correct = 0 total = 0 for images, labels in test_loader: # 向前传递 outputs = net(Variable(images)) # 获取预测结果 _, predicted = torch.max(outputs.data, 1) # 更新统计信息 total += labels.size(0) correct += (predicted == labels).sum() # 计算准确率 print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))有没有测试到测试集

将这段代码改为输出的AUC、f1_score、Accuracy是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.001 dropout_rate = 0.1 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

修改这段代码,使得输出训练集结果是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.001 dropout_rate = 0.1 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

修改代码,使得输出结果是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.01 dropout_rate = 0.7 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

最新推荐

recommend-type

电影票房.csv

电影票房
recommend-type

ASP.NET技术在网站开发设计中的研究与开发(论文+源代码+开题报告)【ASP】.zip

ASP.NET技术在网站开发设计中的研究与开发(论文+源代码+开题报告)【ASP】
recommend-type

WebShell-Password.txt

WebShell-Password
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化

![MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化](https://ww2.mathworks.cn/products/database/_jcr_content/mainParsys/band_1749659463_copy/mainParsys/columns_copy/6d5289a2-72ce-42a8-a475-d130cbebee2e/image_copy_2009912310.adapt.full.medium.jpg/1709291769739.jpg) # 1. MATLAB结构体与数据库交互概述** MATLAB结构体与数据库交互是一种强大的