基于卷积神经网络的图像识别外文翻译

时间: 2023-09-24 18:07:42 浏览: 47
Convolutional Neural Networks for Image Recognition Abstract: Convolutional Neural Networks (CNNs) have recently shown outstanding performance in many computer vision tasks, especially in image recognition. This paper presents an overview of CNNs, including their architecture, training, and applications. We first introduce the basic concepts of CNNs, including convolution, pooling, and nonlinearity, and then discuss the popular CNN models, such as LeNet-5, AlexNet, VGGNet, and ResNet. The training methods of CNNs, such as backpropagation, dropout, and data augmentation, are also discussed. Finally, we present several applications of CNNs in image recognition, including object detection, face recognition, and scene understanding. Introduction: Image recognition is a fundamental task in computer vision, which aims to classify the objects and scenes in images. Traditional methods for image recognition relied on handcrafted features, such as SIFT, HOG, and LBP, which were then fed into classifiers, such as SVM, boosting, and random forests, to make the final prediction. However, these methods suffered from several limitations, such as the need for manual feature engineering, sensitivity to image variations, and difficulty in handling large-scale datasets. Convolutional Neural Networks (CNNs) have emerged as a powerful technique for image recognition, which can automatically learn the features from raw images and make accurate predictions. CNNs are inspired by the structure and function of the visual cortex in animals, which consists of multiple layers of neurons that are sensitive to different visual features, such as edges, corners, and colors. The neurons in each layer receive inputs from the previous layer and apply a set of learned filters to extract the relevant features. The output of each layer is then fed into the next layer, forming a hierarchical representation of the input image. Architecture of CNNs: The basic building blocks of CNNs are convolutional layers, pooling layers, and fully connected layers. Convolutional layers apply a set of filters to the input image, which convolves the filters with the input to produce a set of activation maps. Each filter is responsible for detecting a specific feature, such as edges, corners, or blobs, at different locations in the input image. Pooling layers reduce the dimensionality of the activation maps by subsampling them, which makes the network more robust to spatial translations and reduces the computational cost. Fully connected layers connect all the neurons in one layer to all the neurons in the next layer, which enables the network to learn complex nonlinear relationships between the features. Training of CNNs: The training of CNNs involves minimizing a loss function, which measures the difference between the predicted labels and the true labels. The most common loss function for image classification is cross-entropy, which penalizes the predicted probabilities that deviate from the true probabilities. Backpropagation is used to compute the gradients of the loss function with respect to the network parameters, which are then updated using optimization algorithms, such as stochastic gradient descent (SGD), Adam, and RMSprop. Dropout is a regularization technique that randomly drops out some neurons during training, which prevents overfitting and improves generalization. Data augmentation is a technique that generates new training examples by applying random transformations to the original images, such as rotation, scaling, and flipping, which increases the diversity and quantity of the training data. Applications of CNNs: CNNs have been successfully applied to various image recognition tasks, including object detection, face recognition, and scene understanding. Object detection aims to localize and classify the objects in images, which is a more challenging task than image classification. The popular object detection frameworks based on CNNs include R-CNN, Fast R-CNN, and Faster R-CNN, which use region proposal methods to generate candidate object locations and then classify them using CNNs. Face recognition aims to identify the individuals in images, which is important for security and surveillance applications. The popular face recognition methods based on CNNs include DeepFace, FaceNet, and VGGFace, which learn the deep features of faces and then use metric learning to compare the similarity between them. Scene understanding aims to interpret the semantic meaning of images, which is important for autonomous driving and robotics applications. The popular scene understanding methods based on CNNs include SegNet, FCN, and DeepLab, which perform pixel-wise classification of the image regions based on the learned features. Conclusion: CNNs have revolutionized the field of computer vision and achieved state-of-the-art performance in many image recognition tasks. The success of CNNs can be attributed to their ability to learn the features from raw images and their hierarchical structure that captures the spatial and semantic relationships between the features. CNNs have also inspired many new research directions, such as deep learning, transfer learning, and adversarial learning, which are expected to further improve the performance and scalability of image recognition systems.

相关推荐

最新推荐

recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...
recommend-type

java实现英文翻译程序

主要为大家详细介绍了java实现英文翻译程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

BP神经网络优秀论文1.pdf

这是BP网络算法的一些论文,仅有一篇。这是自己打美赛时留下来的东西,大家可以参考它的模板和一些大标题的英文写法。这篇应该是O奖的。
recommend-type

java实现简单的英文文本单词翻译器功能示例

主要介绍了java实现简单的英文文本单词翻译器功能,涉及java文件读取、字符串分割、遍历、判断等相关操作技巧,需要的朋友可以参考下
recommend-type

计算机专业车牌识别外文翻译

计算机外文翻译计算机专业车牌识别外文翻译计算机专业车牌识别外文翻译计算机专业车牌识别外文翻译计算机专业车牌识别外文翻译
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。