采用鲸鱼算法对一个文件夹中的所有图像进行增强然后再将增强后的图像保存至另一个文件夹中,在代码中采用适当的增强函数和适应度函数
时间: 2024-03-23 20:41:07 浏览: 52
好的,针对这个问题,我来给你一些思路和代码实现建议。
首先,我们需要导入必要的库:
```python
import os
import cv2
import numpy as np
import random
```
然后,我们定义一些图像增强函数,这里我列举一些简单的例子:
```python
def random_brightness(image, max_delta=32):
delta = np.random.uniform(-max_delta, max_delta)
return np.uint8(np.clip(image + delta, 0, 255))
def random_contrast(image, lower=0.5, upper=1.5):
alpha = np.random.uniform(lower, upper)
mean = np.mean(image)
return np.uint8(np.clip(alpha * (image - mean) + mean, 0, 255))
def random_saturation(image, lower=0.5, upper=1.5):
alpha = np.random.uniform(lower, upper)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
return np.uint8(np.clip(alpha * image + (1 - alpha) * gray, 0, 255))
def random_hue(image, max_delta=18.0):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
delta = np.random.uniform(-max_delta, max_delta)
hsv[..., 0] = (hsv[..., 0] + delta) % 180
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def random_crop(image, size=(224, 224)):
h, w, _ = image.shape
new_h, new_w = size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
bottom = top + new_h
right = left + new_w
return image[top:bottom, left:right, :]
def random_flip_left_right(image):
if np.random.random() < 0.5:
return cv2.flip(image, 1)
return image
def random_flip_up_down(image):
if np.random.random() < 0.5:
return cv2.flip(image, 0)
return image
```
接下来,我们定义一个适应度函数,用于评估图像增强的效果:
```python
def fitness_function(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)
return np.mean(edges)
```
然后,我们可以按照以下步骤实现鲸鱼算法:
1. 初始化种群,即读取文件夹中的所有图像,并随机生成一些增强参数。
```python
population_size = 20
generation_limit = 100
elite_size = 2
source_dir = 'path/to/source_dir'
target_dir = 'path/to/target_dir'
source_files = os.listdir(source_dir)
population = []
for i in range(population_size):
filename = random.choice(source_files)
image = cv2.imread(os.path.join(source_dir, filename))
image = random_brightness(image)
image = random_contrast(image)
image = random_saturation(image)
image = random_hue(image)
image = random_crop(image)
image = random_flip_left_right(image)
image = random_flip_up_down(image)
population.append(image)
```
2. 对于每一代,计算每个个体的适应度,并按适应度从大到小进行排序。
```python
for generation in range(generation_limit):
fitnesses = []
for individual in population:
fitness = fitness_function(individual)
fitnesses.append((individual, fitness))
fitnesses.sort(key=lambda x: x[1], reverse=True)
```
3. 选择精英个体,并将其复制到下一代。
```python
elites = [x[0] for x in fitnesses[:elite_size]]
population = elites.copy()
```
4. 采用鲸鱼算法中的搜索策略,生成新的个体,并加入下一代种群中。
```python
for i in range(population_size - elite_size):
a = random.choice(elites)
b = random.choice(population)
c = random.choice(population)
r = random.uniform(-1, 1)
new_individual = np.uint8(np.clip(a + r * (b - c), 0, 255))
new_individual = random_brightness(new_individual)
new_individual = random_contrast(new_individual)
new_individual = random_saturation(new_individual)
new_individual = random_hue(new_individual)
new_individual = random_crop(new_individual)
new_individual = random_flip_left_right(new_individual)
new_individual = random_flip_up_down(new_individual)
population.append(new_individual)
```
5. 最后,将每个个体保存到目标文件夹中。
```python
for i, individual in enumerate(population):
filename = '{:03d}.jpg'.format(i)
cv2.imwrite(os.path.join(target_dir, filename), individual)
```
这就是一个简单的鲸鱼算法图像增强的实现,你可以根据自己的需求和问题进行修改和优化。
阅读全文