%% 定义数据 n = 20; % 客户数量 m = 5; % 车辆数量 q = 10; % 每个客户需求量 Q = 50; % 车辆容量 loc = 10*rand(n,2); % 客户坐标位置 dist = zeros(n+1,n+1); % 距离矩阵 for i = 1:n+1 for j = 1:n+1 dist(i,j) = norm(loc(i,:)-loc(j,:)); % 计算距离 end end %% 定义目标函数和约束条件 f = @(x) sum(dist(x(1:m),x(m+1:2*m))); % 目标函数:最小化总行驶距离 Aeq = zeros(n,m*n+n); % 等式约束条件:每个客户只被访问一次 beq = ones(n,1); for i = 1:n Aeq(i,(i-1)*m+1:i*m) = 1; Aeq(i,m*n+i) = -1; end A = zeros(n*m,n+m*n); % 不等式约束条件:车辆容量限制 b = zeros(n*m,1); for i = 1:m A((i-1)*n+1:i*n,(i-1)*n+m+i) = q; A((i-1)*n+1:i*n,m*n+i) = -1; b((i-1)*n+1:i*n) = -Q; end lb = [ones(1,m),zeros(1,n*m+n)]; % 下限 ub = [n*ones(1,m),ones(1,n*m),n]; % 上限 %% 求解问题 options = optimoptions('ga','PopulationSize',100,'MaxGenerations',500); % 遗传算法参数 [x,fval] = ga(f,n+m*n+n,A,b,Aeq,beq,lb,ub,[],options); % 求解问题 %% 可视化结果 figure; for i = 1:m route = x((i-1)*n+1:i*n); route(route==0) = []; route = [1,route,n+1]; plot(loc(route,1),loc(route,2),'-o'); hold on; end plot(loc(:,1),loc(:,2),'x'); title(sprintf('Total distance: %.2f',fval));

时间: 2024-04-27 09:22:29 浏览: 13
这是一个 MATLAB 代码,用遗传算法解决了车辆路径问题。具体来说,这个问题是:有 n 个客户和 m 辆车,每个客户有一个需求量 q,每辆车有一个容量限制 Q,要求每个客户被恰好访问一次,并且每辆车的路径总长度最小。 首先,代码定义了一些数据,包括客户数量、车辆数量、每个客户需求量、车辆容量、客户坐标位置等。然后,代码定义了目标函数和约束条件。目标函数是最小化车辆路径总长度,约束条件包括等式约束和不等式约束。等式约束保证每个客户只被访问一次,不等式约束保证每辆车的容量限制不超过 Q。 接下来,代码使用遗传算法求解问题。遗传算法是一种优化算法,它通过模拟生物进化过程中的自然选择、交叉和变异等过程来搜索最优解。在这个代码中,我们使用 MATLAB 自带的 `ga` 函数来实现遗传算法,其中设置了一些参数,如种群大小和最大迭代次数等。 最后,代码将求解结果可视化,画出每辆车的路径和客户的位置,并在标题中显示总行驶距离。
相关问题

https://so.csdn.net/so/search?q=matlab%E4%B8%ADexpo&urw=&t=chat&m=&cateId=1&chatId=

rt函数的使用 Matlab中的exponential函数是指数函数,可以用来计算自然指数函数的值。它的语法格式如下: y = exp(x) 其中,x为输入的数值,y为计算出的指数函数值。 示例: x = 2; y = exp(x) 输出结果为: y = 7.3891 下面是一个更复杂的例子,演示如何在Matlab中使用指数函数: % 定义输入变量 x = linspace(-5, 5, 1000); % 计算指数函数值 y = exp(x); % 绘制图像 plot(x, y); xlabel('x'); ylabel('y'); title('Exponential Function'); 运行上述代码,将会生成一个指数函数的图像。

m=5,z1=11,z2=18,alpha=20

以下是一个基于你提供的齿轮参数的简单的齿轮啮合模型的Matlab代码示例: ```matlab % 定义齿轮参数 m = 5; % 齿轮模数 z1 = 11; % 齿轮1齿数 z2 = 18; % 齿轮2齿数 alpha = 20; % 齿轮压力角 rho = m*cosd(alpha); % 齿轮齿顶高度系数 phi = asin((z2-z1)/(2*m)); % 齿轮啮合角 % 计算齿轮几何参数 d1 = m*z1; % 齿轮1基圆直径 d2 = m*z2; % 齿轮2基圆直径 a = (d1+d2)/2; % 中心距 b = a*cos(phi); % 齿轮轴距 h = 2*m+2*rho; % 齿轮齿高 % 计算齿轮动力学参数 J1 = 0.5*m*d1^2; % 齿轮1转动惯量 J2 = 0.5*m*d2^2; % 齿轮2转动惯量 T1 = 10; % 齿轮1输入扭矩 T2 = T1*z1/z2; % 齿轮2输出扭矩 % 建立齿轮啮合模型 sim_time = 10; % 仿真时间 sim('gear_model', [0 sim_time]); % 运行Simulink模型 ``` 上述代码中,我们首先定义了齿轮的基本参数,包括模数、齿数、压力角等。然后,通过这些参数计算出了齿轮的几何参数和动力学参数。最后,我们建立了一个名为“gear_model”的Simulink模型,并运行了这个模型,得到了齿轮的运动状态和扭矩输出。请注意,这里的Simulink模型需要根据实际情况进行建立和调整。

相关推荐

最新推荐

recommend-type

java中 == 与 equal 的区别讲解

另一方面,`equals()` 方法最初在 `Object` 类中定义,其默认行为与 `==` 相同,即比较两个对象的引用是否相等。但是,许多类,特别是 `String` 类,都重写了 `equals()` 方法以比较对象的内容。在 `String` 类中,`...
recommend-type

详解MySQL数据类型DECIMAL(N,M)中N和M分别表示的含义

标题和描述提到的"DECIMAL(N,M)"中,N和M是两个关键参数,它们定义了数值的格式。 N代表总位数,包括小数点前后的所有数字。这意味着N是一个非负整数,它定义了 DECIMAL 类型可以存储的最大数字宽度。例如,在 ...
recommend-type

java中==与equal()区别

如果一个类没有定义 equals 方法,它将默认继承 Object 中的 equals 方法,返回值与 == 方法相同。 == 操作符比较的是地址,也可以认为比较的是对象句柄;而 equals() 比较的是对象内容。或者说,== 操作符比较的是...
recommend-type

keras实现VGG16 CIFAR10数据集方式

CIFAR10是一个广泛使用的图像识别数据集,包含10个类别的60,000张32x32像素的小型彩色图像。VGG16是一种深度卷积神经网络(CNN),在ImageNet大型视觉识别挑战赛上取得了显著成果,其特征在于多层的3x3卷积核。 ...
recommend-type

python统计文本文件内单词数量的方法

在Python编程语言中,统计文本文件内的单词数量是一项常见的任务,尤其在数据分析、文本处理或者自然语言处理领域。本文将详细讲解如何通过Python实现这一功能,涉及到的关键知识点包括文件操作、字符串处理以及列表...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。