可以给我调整超参数的代码吗
时间: 2024-02-15 12:01:24 浏览: 68
当然可以,以下是调整学习率和迭代次数的代码示例:
```
# 调整学习率和迭代次数
iters_num = 20000 # 迭代次数
learning_rate = 0.01 # 学习率
train_loss_list = []
train_acc_list = []
test_acc_list = []
for i in range(iters_num):
batch_mask = np.random.choice(train_size, batch_size)
X_batch = X_train[batch_mask]
T_batch = T_train[batch_mask]
grad = network.gradient(X_batch, T_batch)
for key in ('W1', 'b1', 'W2', 'b2'):
network.params[key] -= learning_rate * grad[key]
loss = network.loss(X_batch, T_batch)
train_loss_list.append(loss)
if i % iter_per_epoch == 0:
train_acc = network.accuracy(X_train, T_train)
test_acc = network.accuracy(X_test, T_test)
train_acc_list.append(train_acc)
test_acc_list.append(test_acc)
print('train acc, test acc | ' + str(train_acc) + ', ' + str(test_acc))
# 调整学习率
if i > 0 and i % 1000 == 0:
learning_rate *= 0.1
print("learning rate reduced to " + str(learning_rate))
```
代码中每隔一定的迭代次数,记录一次训练集和测试集的准确率,并且每迭代1000次时将学习率降低一个数量级。这样可以根据训练过程中的表现,动态调整学习率,加速收敛,提高模型的性能。
阅读全文