解释代码# include < iostream > # include < string > # include < vector > # include < iomanip > using namespace std ;
时间: 2023-12-14 20:03:35 浏览: 216
这段代码是 C++ 中的预处理指令,用于引入头文件并进行命名空间声明。
- `#include <iostream>` 引入输入输出流库,用于控制台输入输出。
- `#include <string>` 引入字符串库,用于处理字符串操作。
- `#include <vector>` 引入向量库,用于动态数组操作。
- `#include <iomanip>` 引入输入输出流格式化库,用于格式化控制台输出。
`using namespace std;` 是命名空间声明,表示使用标准命名空间(std)中的所有函数和类,避免了每次使用时都要写 std:: 的麻烦。
相关问题
#include <iostream> #include <string> #include <stack> #include <vector> #include <iomanip> using namespace std; 逐行注释以上代码
这是一段C++的程序代码,使用了几个标准库的头文件。以下是逐行的注释:
```
#include <iostream> // 输入输出流库头文件
#include <string> // 字符串库头文件
#include <stack> // 栈库头文件
#include <vector> // 向量库头文件
#include <iomanip> // 格式控制库头文件
using namespace std; // 命名空间
```
这段程序代码导入了五个标准库的头文件,分别是iostream、string、stack、vector、iomanip,它们分别用于处理输入输出、字符串、栈、向量和格式控制。其中iostream是C++中最常用的输入输出流库,string是用于字符串操作的库,stack是用于栈数据结构的库,vector是用于动态数组的库,iomanip是用于格式化输出的库。
最后一行代码使用了命名空间std,这意味着所有的标准库函数和变量都在std命名空间中。如果不使用using namespace std,则需要在使用标准库函数时加上std::前缀。
在不使用任何STL容器的前提下实现这个代码#include <iostream> #include <memory> #include <stack> #include <fstream> #include <vector> #include <cmath> #include <iomanip> #include <exception> #include <climits> #include <array> #include <cstdint> #include <string> using namespace std; class T { public: virtual bool isOperator() = 0; virtual ~T() {} };
可以使用裸指针和自定义容器实现这段代码。
首先,我们需要定义一个自定义容器来存储T类型的指针。这个容器可以使用动态数组实现,需要自己管理内存。下面是一个简单的实现:
```c++
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
接下来,我们需要定义一个栈,用来存储T类型的指针。这个栈可以使用动态数组实现,也需要自己管理内存。栈的基本操作包括push、pop、top等,可以按照以下方式实现:
```c++
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
```
最后,我们可以定义一个派生自T的类,来实现isOperator()函数。这个函数在子类中可以根据实际需求来具体实现。
```c++
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
```
这样,就可以在不使用STL容器的前提下实现这个代码了。完整代码如下:
```c++
#include <iostream>
using namespace std;
class T {
public:
virtual bool isOperator() = 0;
virtual ~T() {}
};
class MyT : public T {
public:
bool isOperator() override {
// 实现具体的逻辑
return false;
}
};
class MyVector {
public:
MyVector() : size_(0), capacity_(0), data_(nullptr) {}
~MyVector() {
clear();
delete[] data_;
}
void push_back(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop_back() {
if (size_ > 0) {
--size_;
}
}
T* back() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
class MyStack {
public:
MyStack() : size_(0), capacity_(0), data_(nullptr) {}
~MyStack() {
clear();
delete[] data_;
}
void push(T* ptr) {
if (size_ == capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ * 2);
}
data_[size_++] = ptr;
}
void pop() {
if (size_ > 0) {
--size_;
}
}
T* top() const {
return size_ > 0 ? data_[size_ - 1] : nullptr;
}
bool empty() const {
return size_ == 0;
}
void clear() {
for (int i = 0; i < size_; ++i) {
delete data_[i];
}
size_ = 0;
}
private:
void reserve(int new_capacity) {
T** new_data = new T*[new_capacity];
for (int i = 0; i < size_; ++i) {
new_data[i] = data_[i];
}
delete[] data_;
data_ = new_data;
capacity_ = new_capacity;
}
int size_;
int capacity_;
T** data_;
};
int main() {
MyVector vec;
vec.push_back(new MyT());
vec.clear();
MyStack stk;
stk.push(new MyT());
stk.clear();
return 0;
}
```
阅读全文