import gurobipy as gp import numpy as np import math delta = 0.005 S = 10 # 历史数据个数 T = 20 # T个阶段 c_p = 225 tau = 13500 # 预期收益目标 z_bar = 1 # 需求上届 C_re = 20 C_se = 30 h = 3.25 # 超储成本 zbar = 1 # 需求上届 q = 0.2 # 维修率 sigma = 0.1 # 标准差 z_hat = np.around((1 - 1 * np.random.rand(S, T)) * zbar) # 假设历史数据 i = np.arange(1, T + 1) # [1,2,...,n] e_sigma = np.logspace(1, T - 1, T, base=np.exp(-sigma)) # 创建模型 model = gp.Model() # 创建变量 x = model.addVar(lb=0, vtype=gp.GRB.CONTINUOUS, name="x") k = model.addVar(lb=0, vtype=gp.GRB.CONTINUOUS, name="k") eta1 = model.addVar(T, vtype=gp.GRB.BINARY, name="eta1") eta2 = model.addVar(T, vtype=gp.GRB.BINARY, name="eta2") y = {} for s in range(S): y[s] = model.addVar(lb=0, vtype=gp.GRB.CONTINUOUS, name="y_" + str(s)) e = gp.quicksum([math.exp(-delta * t) for t in range(1, T + 1)]) # 添加约束 for s in range(S): lhs = gp.dot(eta1[s], z_bar) + (gp.dot((C_re * q + C_se), e) - eta1[s] + eta2[s]) @ z_hat[s] / S model.addConstr(y[s] >= lhs) model.addConstr(gp.norm2((C_re * q + C_se) @ e - eta1[s] + eta2[s]) <= k) model.addConstr(c_p @ x + gp.quicksum([gp.exp(-delta * t) * h @ x for t in range(1, T + 1)]) + gp.quicksum([y[s] / S for s in range(S)]) <= tau) # 添加目标 model.setObjective(gp.abs_(k), sense=gp.GRB.MINIMIZE) # 求解 model.optimize()
时间: 2023-06-26 22:09:31 浏览: 329
python数据分析与可视化 import pandas as pd import numpy as np import m
这是一个使用Gurobi进行优化的Python脚本,主要是解决一个决策问题。具体来说,它建立了一个数学模型,通过一些变量和约束条件来描述一个决策问题,并且最小化一个目标函数。在这个模型中,有一些变量可以调整,例如x、k和eta1等等,这些变量会影响目标函数的值。同时,还有一些约束条件,例如y的约束条件,这些约束条件限制了变量的取值范围,使得问题更加严谨。最终,通过使用Gurobi的求解器,可以得到一个最优解,用于指导实际决策。
阅读全文