帮我写stm32和AD7622差分模拟输入采集电压信号ADC转化为16I/O口并行输出读取,循环读取258次并存储在一个数组里面打包通过DMA发送给上位机的代码,详细版库函数的可靠性分析

时间: 2024-06-11 15:05:58 浏览: 12
首先,需要了解STM32和AD7622的硬件连接方式和配置。AD7622是一款16位差分输入ADC芯片,可以通过SPI接口与STM32通信。我们需要配置STM32的SPI接口,以控制AD7622进行采样和转换。 接下来,我们需要使用STM32的ADC模块对采集到的电压信号进行转换。首先,需要配置ADC的参数,如采样频率、采样通道等。然后,我们可以使用DMA技术将转换结果存储在数组中,并将其发送给上位机。 以下是详细的代码实现: 1. 硬件连接和配置 我们需要将AD7622的SDI、SDO、SCLK、CS等引脚连接到STM32的相应引脚上。然后,我们需要配置STM32的SPI接口,以控制AD7622进行采样和转换。具体的配置方法可以参考STM32的HAL库函数手册。 2. ADC转换和DMA发送 首先,我们需要配置ADC的参数,如采样频率、采样通道等。然后,我们可以使用DMA技术将转换结果存储在数组中,并将其发送给上位机。以下是代码实现: ``` #include "stm32f4xx_hal.h" #define ADC_CHANNELS_NUM 16 #define ADC_DMA_BUFFER_SIZE 258 ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; SPI_HandleTypeDef hspi1; uint16_t adc_dma_buffer[ADC_DMA_BUFFER_SIZE]; void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ENABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = ADC_CHANNELS_NUM; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } // 配置DMA hdma_adc1.Instance = DMA2_Stream0; hdma_adc1.Init.Channel = DMA_CHANNEL_0; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH; hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1); HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); } void MX_SPI1_Init(void) { hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } } void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0); } void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if (hadc->Instance == ADC1) { /* Peripheral clock enable */ __HAL_RCC_ADC1_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**ADC1 GPIO Configuration PC0 ------> ADC1_IN10 PC1 ------> ADC1_IN11 PC2 ------> ADC1_IN12 PC3 ------> ADC1_IN13 PC4 ------> ADC1_IN14 PC5 ------> ADC1_IN15 PB0 ------> ADC1_IN8 PB1 ------> ADC1_IN9 */ GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* ADC1 DMA Init */ /* ADC1 Init */ hdma_adc1.Instance = DMA2_Stream0; hdma_adc1.Init.Channel = DMA_CHANNEL_0; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH; hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1); } } void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) { if (hadc->Instance == ADC1) { /* Peripheral clock disable */ __HAL_RCC_ADC1_CLK_DISABLE(); /**ADC1 GPIO Configuration PC0 ------> ADC1_IN10 PC1 ------> ADC1_IN11 PC2 ------> ADC1_IN12 PC3 ------> ADC1_IN13 PC4 ------> ADC1_IN14 PC5 ------> ADC1_IN15 PB0 ------> ADC1_IN8 PB1 ------> ADC1_IN9 */ HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5); HAL_GPIO_DeInit(GPIOB, GPIO_PIN_0 | GPIO_PIN_1); /* ADC1 DMA DeInit */ HAL_DMA_DeInit(hadc->DMA_Handle); } } void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if (hspi->Instance == SPI1) { /* Peripheral clock enable */ __HAL_RCC_SPI1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**SPI1 GPIO Configuration PA5 ------> SPI1_SCK PA6 ------> SPI1_MISO PA7 ------> SPI1_MOSI */ GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } } void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) { if (hspi->Instance == SPI1) { /* Peripheral clock disable */ __HAL_RCC_SPI1_CLK_DISABLE(); /**SPI1 GPIO Configuration PA5 ------> SPI1_SCK PA6 ------> SPI1_MISO PA7 ------> SPI1_MOSI */ HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7); } } void DMA2_Stream0_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_adc1); } int main(void) { HAL_Init(); MX_ADC1_Init(); MX_SPI1_Init(); HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_dma_buffer, ADC_CHANNELS_NUM * ADC_DMA_BUFFER_SIZE); while (1) { HAL_Delay(10); } } ``` 以上是基本的代码实现,但是在实际项目中,需要考虑更多的情况,例如数据的校验和传输可靠性等。因此,我们需要对代码进行更加详细的测试和验证,以确保其可靠性和稳定性。

相关推荐

最新推荐

recommend-type

我对stm32中GPIO输入输出模式的理解

stm32中的GPIO输入输出模式有八种,分别是模拟输入、浮空输入、上拉输入、下拉输入、开漏输出、推挽输出、复用开漏输出和复用推挽输出。 1. 模拟输入 模拟输入是stm32中的一个输入模式,该模式下,GPIO口不经过...
recommend-type

利用单片机I/O口直接驱动LCD

如何将小家电成本降低的同时,又保证其性能,是对应用工程师提出的更高要求。本控制板需要进行温度控制,显示界面要求LCD显示。带专用LCD驱动器,又带A/D转换器的单片机成本太高,因此选用台湾义隆公司带A/D的单片机EM78P...
recommend-type

基于STM32单片机的差分升级(增量升级)算法移植手册V1.3, STM32+BsDiff+LZ77+CRC32

随着目前物联网,车联网,智能设备的增多,需要远程升级设备程序的场景增多,以往的IAP升级和OTA升级都是整包升级,bin文件过大导致升级过程依赖通信的带宽和延迟,差分升级(增量升级)恰好可以解决这个问题,两者各有优缺点...
recommend-type

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客.pdf

在STM32中,ADC(模拟数字转换器)用于将模拟信号转换为数字信号,以便微控制器能够处理这些信号。多通道ADC意味着可以同时或按顺序对多个不同的模拟输入进行采样。这在需要同时监测多个传感器或信号的情况下非常...
recommend-type

揭秘STM32多路电压测量电路

STM32在速度、功耗方面性能都更加优越,并且STM32价格较低,在成本上也有优势。适合于控制电子设备的设计。使用12位ADC,能够满足一定的测量精度,对于较高的测量要求,则需要使用更高精确度的ADC。但是使用高精度 ...
recommend-type

爬壁清洗机器人设计.doc

"爬壁清洗机器人设计" 爬壁清洗机器人是一种专为高层建筑外墙或屋顶清洁而设计的自动化设备。这种机器人能够有效地在垂直表面移动,完成高效且安全的清洗任务,减轻人工清洁的危险和劳动强度。在设计上,爬壁清洗机器人主要由两大部分构成:移动系统和吸附系统。 移动系统是机器人实现壁面自由移动的关键。它采用了十字框架结构,这种设计增加了机器人的稳定性,同时提高了其灵活性和避障能力。十字框架由两个呈十字型组合的无杆气缸构成,它们可以在X和Y两个相互垂直的方向上相互平移。这种设计使得机器人能够根据需要调整位置,适应不同的墙面条件。无杆气缸通过腿部支架与腿足结构相连,腿部结构包括拉杆气缸和真空吸盘,能够交替吸附在壁面上,实现机器人的前进、后退、转弯等动作。 吸附系统则由真空吸附结构组成,通常采用多组真空吸盘,以确保机器人在垂直壁面上的牢固吸附。文中提到的真空吸盘组以正三角形排列,这种方式提供了均匀的吸附力,增强了吸附稳定性。吸盘的开启和关闭由气动驱动,确保了吸附过程的快速响应和精确控制。 驱动方式是机器人移动的动力来源,由X方向和Y方向的双作用无杆气缸提供。这些气缸安置在中间的主体支架上,通过精确控制,实现机器人的精准移动。这种驱动方式既保证了力量,又确保了操作的精度。 控制系统作为爬壁清洗机器人的大脑,采用三菱公司的PLC-FX1N系列,负责管理机器人的各个功能,包括吸盘的脱离与吸附、主体的移动、清洗作业的执行等。PLC(可编程逻辑控制器)具有高可靠性,能根据预设程序自动执行指令,确保机器人的智能操作。 爬壁清洗机器人结合了机械结构、气动控制和智能电子技术,实现了在复杂环境下的自主清洁任务。其设计考虑了灵活性、稳定性和安全性,旨在提高高层建筑清洁工作的效率和安全性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)

![Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)](https://img-blog.csdnimg.cn/12b70559909c4535891adbdf96805846.png) # 1. Python并发编程基础** 并发编程是一种编程范式,它允许程序同时执行多个任务。在Python中,可以通过多线程和多进程来实现并发编程。 多线程是指在单个进程中创建多个线程,每个线程可以独立执行任务。多进程是指创建多个进程,每个进程都有自己的内存空间和资源。 选择多线程还是多进程取决于具体应用场景。一般来说,多线程适用于任务之间交互较少的情况,而多进程适用于任务之间交互较多或
recommend-type

matlab小程序代码

MATLAB是一款强大的数值计算和可视化工具,特别适合进行科学计算、工程分析和数据可视化。编写MATLAB小程序通常涉及使用其内置的数据类型、函数库以及面向对象编程特性。以下是一个简单的MATLAB代码示例,用于计算两个数的和: ```matlab % MATLAB程序:计算两个数的和 function sum = addTwoNumbers(num1, num2) % 定义函数 sum = num1 + num2; % 返回结果 disp(['The sum of ' num2str(num1) ' and ' num2str(num2) ' is ' nu
recommend-type

喷涂机器人.doc

"该文档详细介绍了喷涂机器人的设计与研发,包括其背景、现状、总体结构、机构设计、轴和螺钉的校核,并涉及到传感器选择等关键环节。" 喷涂机器人是一种结合了人类智能和机器优势的机电一体化设备,特别在自动化水平高的国家,其应用广泛程度是衡量自动化水平的重要指标。它们能够提升产品质量、增加产量,同时在保障人员安全、改善工作环境、减轻劳动强度、提高劳动生产率和节省原材料等方面具有显著优势。 第一章绪论深入探讨了喷涂机器人的研究背景和意义。课题研究的重点在于分析国内外研究现状,指出国内主要集中在基础理论和技术的应用,而国外则在技术创新和高级功能实现上取得更多进展。文章明确了本文的研究内容,旨在通过设计高效的喷涂机器人来推动相关技术的发展。 第二章详细阐述了喷涂机器人的总体结构设计,包括驱动系统的选择(如驱动件和自由度的确定),以及喷漆机器人的运动参数。各关节的结构形式和平衡方式也被详细讨论,如小臂、大臂和腰部的传动机构。 第三章主要关注喷漆机器人的机构设计,建立了数学模型进行分析,并对腕部、小臂和大臂进行了具体设计。这部分涵盖了电机的选择、铰链四杆机构设计、液压缸设计等内容,确保机器人的灵活性和精度。 第四章聚焦于轴和螺钉的设计与校核,以确保机器人的结构稳定性。大轴和小轴的结构设计与强度校核,以及回转底盘与腰部主轴连接螺钉的校核,都是为了保证机器人在运行过程中的可靠性和耐用性。 此外,文献综述和外文文献分析提供了更广泛的理论支持,开题报告则展示了整个研究项目的目标和计划。 这份文档全面地展示了喷涂机器人的设计过程,从概念到实际结构,再到部件的强度验证,为读者提供了深入理解喷涂机器人技术的宝贵资料。