假设你是一个pytorch,请写出一个基于optuna优化vgg16模型的代码
时间: 2024-02-26 16:52:16 浏览: 135
pytorch获取vgg16-feature层输出的例子
5星 · 资源好评率100%
好的,以下是一个基于Optuna优化VGG16模型的PyTorch代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import optuna
# Define the VGG16 model architecture
class VGG16(nn.Module):
def __init__(self, num_classes=10):
super(VGG16, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# Define the objective function for Optuna to optimize
def objective(trial):
# Load the CIFAR10 dataset
cifar10_train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
trainloader = torch.utils.data.DataLoader(cifar10_train, batch_size=128, shuffle=True)
testloader = torch.utils.data.DataLoader(cifar10_test, batch_size=128, shuffle=False)
# Define the hyperparameters to optimize
lr = trial.suggest_loguniform("lr", 1e-4, 1e-1)
weight_decay = trial.suggest_loguniform("weight_decay", 1e-5, 1e-1)
momentum = trial.suggest_uniform("momentum", 0.0, 1.0)
# Define the model, optimizer, and loss function
model = VGG16(num_classes=10)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
loss_fn = nn.CrossEntropyLoss()
# Train the model for one epoch
model.train()
for batch_idx, (data, target) in enumerate(trainloader):
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
# Evaluate the model on the test set
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in testloader:
output = model(data)
test_loss += loss_fn(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
# Compute the test accuracy and return it as the objective value for Optuna
accuracy = correct / len(testloader.dataset)
return accuracy
# Run the Optuna study to optimize the hyperparameters
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
# Print the best hyperparameters and objective value found by Optuna
print("Best hyperparameters: {}".format(study.best_params))
print("Best objective value: {}".format(study.best_value))
```
在这个代码中,我们定义了一个VGG16模型,它有许多超参数需要优化,包括学习率、权重衰减和动量。我们使用Optuna来搜索这些超参数的最佳组合,以最大化在CIFAR10测试集上的精度。我们定义了一个目标函数,它训练VGG16模型一个epoch,并返回在测试集上的精度作为目标值。我们使用Optuna的create_study函数来创建一个study对象,并调用它的optimize函数来运行优化过程。最后,我们打印出Optuna找到的最佳超参数和目标值。
阅读全文