图论matlab代码整理
时间: 2023-11-25 12:04:23 浏览: 70
数学建模matlab常用算法代码整理集合.rar
5星 · 资源好评率100%
下面是一些基本的图论算法的 MATLAB 代码实现,包括:
1. 图的表示方式:邻接矩阵和邻接表
2. 图的遍历:深度优先搜索和广度优先搜索
3. 最短路径算法:Dijkstra算法和Floyd算法
4. 最小生成树算法:Prim算法和Kruskal算法
图的表示方式:
邻接矩阵:
```matlab
% 用邻接矩阵表示图
% G为邻接矩阵,n为节点数
G = zeros(n);
G(i,j) = 1; % i,j之间有一条边
```
邻接表:
```matlab
% 用邻接表表示图
% G为邻接表,n为节点数
G = cell(1,n);
G{i} = [j1,j2,...]; % i的邻居节点为j1,j2,...
```
图的遍历:
深度优先搜索:
```matlab
% 深度优先搜索
% G为邻接表,n为节点数,start为起点
visited = false(1,n);
dfs(G,start,visited);
function dfs(G,i,visited)
visited(i) = true;
neighbors = G{i};
for j=1:length(neighbors)
if ~visited(neighbors(j))
dfs(G,neighbors(j),visited);
end
end
end
```
广度优先搜索:
```matlab
% 广度优先搜索
% G为邻接表,n为节点数,start为起点
visited = false(1,n);
queue = start;
visited(start) = true;
while ~isempty(queue)
i = queue(1);
queue(1) = [];
neighbors = G{i};
for j=1:length(neighbors)
if ~visited(neighbors(j))
visited(neighbors(j)) = true;
queue(end+1) = neighbors(j);
end
end
end
```
最短路径算法:
Dijkstra算法:
```matlab
% Dijkstra算法
% G为邻接矩阵,n为节点数,start为起点
dist = inf(1,n);
dist(start) = 0;
visited = false(1,n);
for i=1:n
% 找到距离起点最近的节点
[~,j] = min(dist(~visited));
visited(j) = true;
neighbors = find(G(j,:));
for k=1:length(neighbors)
if ~visited(neighbors(k)) && dist(j)+G(j,neighbors(k))<dist(neighbors(k))
dist(neighbors(k)) = dist(j)+G(j,neighbors(k));
end
end
end
```
Floyd算法:
```matlab
% Floyd算法
% G为邻接矩阵,n为节点数
dist = G;
for k=1:n
for i=1:n
for j=1:n
if dist(i,k)+dist(k,j)<dist(i,j)
dist(i,j) = dist(i,k)+dist(k,j);
end
end
end
end
```
最小生成树算法:
Prim算法:
```matlab
% Prim算法
% G为邻接矩阵,n为节点数
visited = false(1,n);
visited(1) = true;
dist = G(1,:);
parent = zeros(1,n);
for i=2:n
[~,j] = min(dist(~visited));
visited(j) = true;
parent(j) = find(G(:,j)==dist(j));
neighbors = find(G(j,:));
for k=1:length(neighbors)
if ~visited(neighbors(k)) && G(j,neighbors(k))<dist(neighbors(k))
dist(neighbors(k)) = G(j,neighbors(k));
parent(neighbors(k)) = j;
end
end
end
```
Kruskal算法:
```matlab
% Kruskal算法
% edges为边的列表,每条边为[u,v,w],表示u和v之间有一条权重为w的边
% n为节点数
edges = sortrows(edges,3);
parent = 1:n;
rank = zeros(1,n);
mst = [];
for i=1:size(edges,1)
u = edges(i,1);
v = edges(i,2);
w = edges(i,3);
p1 = find(parent(u));
p2 = find(parent(v));
if p1~=p2
mst(end+1,:) = edges(i,:);
if rank(p1)>rank(p2)
parent(p2) = p1;
else
parent(p1) = p2;
if rank(p1)==rank(p2)
rank(p2) = rank(p2)+1;
end
end
end
end
```
阅读全文