bp神经网络写一个python中karea图像识别代码
时间: 2023-05-14 16:06:22 浏览: 127
基于Python BP神经网络与卷积神经网络实现手写数字图像识别【100011323】
以下是一个使用 Keras 库实现 BP 神经网络进行图像识别的 Python 代码示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.datasets import mnist
# 加载 MNIST 数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 将图像数据转换为 4 维张量
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
input_shape = (28, 28, 1)
# 将图像数据转换为浮点数,并进行归一化
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# 将类别标签转换为 one-hot 编码
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)
# 构建 BP 神经网络模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, Y_train, batch_size=128, epochs=10, verbose=1, validation_data=(X_test, Y_test))
# 评估模型
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这个代码使用了 Keras 库,构建了一个包含两个卷积层、一个池化层、两个全连接层和一个 softmax 层的 BP 神经网络模型,用于对 MNIST 手写数字图像进行分类。
阅读全文