用python写一段用遗传算法优化模态数K和惩罚系数α的VMD算法对信号进行分解
时间: 2024-04-30 16:21:10 浏览: 124
好的,以下是一个简单的使用遗传算法优化VMD算法参数的Python代码示例:
```python
import numpy as np
from vmd import VMD
from deap import base, creator, tools, algorithms
# 定义适应度函数:信号重构误差
def fitness(params, signal):
k, alpha = params
vmd = VMD(signal)
u, u_hat = vmd.decompose(k, alpha)
recon = np.sum(u_hat, axis=0)
error = np.mean(np.abs(signal - recon))
return error,
# 定义遗传算法参数
POP_SIZE = 50
CROSS_PROB = 0.8
MUT_PROB = 0.05
GENERATIONS = 50
# 定义遗传算法对象
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_k", np.random.randint, 1, 10)
toolbox.register("attr_alpha", np.random.uniform, 0.1, 1.0)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_k, toolbox.attr_alpha), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", fitness)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
# 初始化种群
pop = toolbox.population(n=POP_SIZE)
# 执行遗传算法优化
for gen in range(GENERATIONS):
offspring = algorithms.varAnd(pop, toolbox, CROSS_PROB, MUT_PROB)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
pop = toolbox.select(offspring, k=len(pop))
# 输出最优参数
best_ind = tools.selBest(pop, k=1)[0]
best_k, best_alpha = best_ind[0], best_ind[1]
print("Best params: k={}, alpha={}".format(best_k, best_alpha))
```
以上代码中使用了Python中的DEAP库来实现遗传算法。VMD的实现可以使用第三方库vmd-python,这里只是演示如何使用遗传算法优化VMD算法的参数。
阅读全文