基于R写一个实例,实现空间回归模型,包括检验和选择,写明具体步骤和原理(附详细代码以及数据集)
时间: 2024-06-11 13:10:31 浏览: 144
由于没有提供具体数据集,本文将使用R语言自带的mtcars数据集进行空间回归模型的实现。
步骤:
1. 导入数据集
```r
data(mtcars)
```
2. 安装和加载所需的包
```r
install.packages("spdep")
library(spdep)
```
3. 创建空间权重矩阵
```r
coords <- as.matrix(mtcars[, c("wt", "qsec")])
nb <- knn2nb(knearneigh(coords, k = 5))
W <- nb2listw(nb)
```
4. 构建空间回归模型
```r
lm_spatial <- spautolm(mpg ~ wt + qsec, data = mtcars, W = W)
summary(lm_spatial)
```
5. 进行Lagrange Multiplier检验
```r
lmtest::lmtest(lm_spatial, test = "LM")
```
6. 进行Moran's I检验
```r
moran.test(lm_spatial$resid, listw = W)
```
7. 进行GWR模型选择
```r
options(na.action = "na.fail")
gwr.sel(lm_spatial, verbose = TRUE)
```
完整代码:
```r
# 导入数据集
data(mtcars)
# 安装和加载所需的包
install.packages("spdep")
library(spdep)
# 创建空间权重矩阵
coords <- as.matrix(mtcars[, c("wt", "qsec")])
nb <- knn2nb(knearneigh(coords, k = 5))
W <- nb2listw(nb)
# 构建空间回归模型
lm_spatial <- spautolm(mpg ~ wt + qsec, data = mtcars, W = W)
summary(lm_spatial)
# 进行Lagrange Multiplier检验
lmtest::lmtest(lm_spatial, test = "LM")
# 进行Moran's I检验
moran.test(lm_spatial$resid, listw = W)
# 进行GWR模型选择
options(na.action = "na.fail")
gwr.sel(lm_spatial, verbose = TRUE)
```
参考文献:
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer.
阅读全文