实现一个链表,使其内部数据为不定长多维数据,并实现对它的初始化,求数据元素个数,插入、删除、取数据元素,判断为非空操作。并对多维数字信号进行均值滤波、上采样、下采样
时间: 2023-05-14 14:04:20 浏览: 103
非常好的问题!我可以为您提供以下代码来实现链表:
```
class Node:
def __init__(self, data):
self.data = data
self.next = None
class LinkedList:
def __init__(self):
self.head = None
self.count = 0
def is_empty(self):
return self.head is None
def insert(self, data):
new_node = Node(data)
new_node.next = self.head
self.head = new_node
self.count += 1
def delete(self, data):
current = self.head
previous = None
while current is not None:
if current.data == data:
if previous is not None:
previous.next = current.next
else:
self.head = current.next
self.count -= 1
return
previous = current
current = current.next
def get_count(self):
return self.count
def get_data(self, index):
if index >= self.count:
raise IndexError("Index out of range")
current = self.head
for i in range(index):
current = current.next
return current.data
def mean_filter(self, window_size):
current = self.head
while current is not None:
if isinstance(current.data, list):
for i in range(len(current.data)):
if i < window_size or i >= len(current.data) - window_size:
continue
current.data[i] = sum(current.data[i-window_size:i+window_size+1]) / (2*window_size+1)
current = current.next
def upsample(self, factor):
current = self.head
while current is not None:
if isinstance(current.data, list):
current.data = [current.data[i//factor] for i in range(len(current.data)*factor)]
current = current.next
def downsample(self, factor):
current = self.head
while current is not None:
if isinstance(current.data, list):
current.data = [sum(current.data[i:i+factor])/factor for i in range(0, len(current.data), factor)]
current = current.next
```
这个链表可以存储不定长多维数据,可以进行初始化、插入、删除、取数据元素、判断非空等操作。对于多维数字信号的均值滤波、上采样、下采样,我在链表中添加了相应的方法,可以直接调用。
例如,如果您有一个链表 `my_list`,其中存储了多维数字信号,您可以这样调用方法:
```
my_list.mean_filter(3) # 对信号进行均值滤波,窗口大小为3
my_list.upsample(2) # 对信号进行上采样,采样因子为2
my_list.downsample(2) # 对信号进行下采样,采样因子为2
```
希望这个代码可以帮助您实现您的需求!
阅读全文