用EKF解决到达角定位算法,模型为双站定位二维情况,写出matlab代码并得到仿真图
时间: 2023-12-19 22:04:23 浏览: 205
首先,我们需要定义EKF的状态变量和观测变量,并初始化协方差矩阵和状态估计值。在这个例子中,状态变量为目标位置和速度,观测变量为两个基站接收到的信号到达时间差(TDOA)。
```
% Define state variables
x = [0; 0; 0; 0]; % [x_pos, y_pos, x_vel, y_vel]
% Define observation variables
z = [0; 0]; % [tdoa_1_2, tdoa_1_3]
% Initialize covariance matrix and state estimate
P = eye(4);
Q = diag([0.1, 0.1, 0.1, 0.1]); % Process noise covariance
R = diag([0.1, 0.1]); % Measurement noise covariance
```
接下来,我们需要定义状态转移函数和观测函数。在这个例子中,状态转移函数为简单的匀加速直线运动模型,观测函数为基站之间的TDOA。
```
% Define state transition function
dt = 0.1; % Time step
A = [1, 0, dt, 0;
0, 1, 0, dt;
0, 0, 1, 0;
0, 0, 0, 1];
B = [0.5*dt^2, 0;
0, 0.5*dt^2;
dt, 0;
0, dt];
u = [0; 0]; % Control input (none in this example)
f = @(x, u) A*x + B*u;
% Define observation function
c = 3e8; % Speed of light
d1 = 10; % Distance to first base station
d2 = 20; % Distance to second base station
d3 = 30; % Distance to third base station
h = @(x) [(norm(x(1:2)-[0;0])-norm(x(1:2)-[d1;0]))/c;
(norm(x(1:2)-[0;0])-norm(x(1:2)-[0;d2]))/c;
(norm(x(1:2)-[0;0])-norm(x(1:2)-[d3;d2]))/c];
```
现在我们可以开始运行EKF算法。首先,我们需要从传感器获取观测值,并将其输入到EKF中进行状态估计。然后,我们使用状态估计值来预测下一个状态,并将其与传感器观测值进行比较以更新状态估计值和协方差矩阵。
```
% Run EKF algorithm
for i = 1:100
% Get observation from sensors
z = h(x) + sqrt(R)*randn(2,1);
% Predict next state and covariance
x_pred = f(x, u);
P_pred = A*P*A' + Q;
% Calculate Kalman gain
K = P_pred*c'*pinv(c*P_pred*c' + R);
% Update state estimate and covariance
x = x_pred + K*(z - h(x_pred));
P = (eye(4) - K*c)*P_pred;
% Plot current estimate
plot(x(1), x(2), 'ro');
hold on;
axis([-50 50 -50 50]);
xlabel('X position');
ylabel('Y position');
pause(0.1);
end
```
最后,我们可以运行仿真并绘制目标的运动轨迹。
```
% Simulate target motion
x_true = [0; 0; 10; 10]; % [x_pos, y_pos, x_vel, y_vel]
figure;
for i = 1:100
% Update true state
x_true = f(x_true, u);
% Plot true state
plot(x_true(1), x_true(2), 'bx');
hold on;
end
```
以下是完整的MATLAB代码:
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)