如何实际操作使用谷歌公司的vision transformer代码
时间: 2023-10-24 19:26:15 浏览: 111
要使用谷歌公司的 Vision Transformer 代码,您需要遵循以下步骤:
1. 安装 TensorFlow 和 TensorFlow Datasets:
```
!pip install tensorflow
!pip install tensorflow-datasets
```
2. 导入所需的库:
```
import tensorflow as tf
import tensorflow_datasets as tfds
```
3. 加载数据集:
```
dataset, info = tfds.load('cifar10', with_info=True, as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']
```
4. 对图像数据进行预处理:
```
IMG_SIZE = 224
def preprocess_image(image, label):
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
image = tf.cast(image, tf.float32) / 255.
return image, label
train_dataset = train_dataset.map(preprocess_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.batch(64)
train_dataset = train_dataset.shuffle(buffer_size=1000)
train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test_dataset.map(preprocess_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test_dataset = test_dataset.batch(64)
test_dataset = test_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
```
5. 构建模型:
```
from official.vision_transformer import vision_transformer
num_classes = 10
vit = vision_transformer.VisionTransformer(
image_size=IMG_SIZE,
patch_size=32,
num_layers=12,
num_heads=12,
mlp_dim=3072,
channels=3,
dropout_rate=0.1,
num_classes=num_classes
)
```
6. 训练模型:
```
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
vit.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy'])
vit.fit(train_dataset, validation_data=test_dataset, epochs=10)
```
以上就是使用谷歌公司的 Vision Transformer 代码的基本步骤。您需要根据自己的数据集和需求进行修改。
阅读全文