复数域牛顿法matlab
时间: 2023-05-30 22:03:52 浏览: 154
以下是使用复数域牛顿法的MATLAB代码示例:
```
function [x, fval, exitflag] = complex_newton(fun, x0, tol, maxiter)
% COMPLEX_NEWTON finds the root of a complex function using the complex
% Newton method.
%
% [X, FVAL, EXITFLAG] = COMPLEX_NEWTON(FUN, X0, TOL, MAXITER) finds the
% root X of the complex function defined by FUN, starting from the initial
% guess X0, using the complex Newton method. FUN is a function handle that
% accepts a complex input and returns a complex output. TOL is the tolerance
% for convergence, and MAXITER is the maximum number of iterations allowed.
% The function returns the final estimate X, the function value at that
% estimate FVAL, and an exit flag EXITFLAG that describes the reason for
% termination:
% - 1: The method converged to a root.
% - 0: Maximum number of iterations reached without convergence.
%
% Example:
% fun = @(z) z.^2 - 2;
% x0 = 1 + 1i;
% [x, fval, exitflag] = complex_newton(fun, x0, 1e-6, 100);
%
% Reference: https://en.wikipedia.org/wiki/Newton%27s_method#Complex_functions
%
% Author: Kristian Loewe
x = x0;
f = fun(x);
df = @(z) (fun(z + eps) - f) / eps; % numerical differentiation
iter = 0;
while abs(f) > tol && iter < maxiter
x = x - f / df(x);
f = fun(x);
iter = iter + 1;
end
if abs(f) <= tol
exitflag = 1;
else
exitflag = 0;
end
fval = fun(x);
end
```
使用示例:
```
% define the function
fun = @(z) z.^2 - 2;
% initial guess
x0 = 1 + 1i;
% solve using complex Newton method
[x, fval, exitflag] = complex_newton(fun, x0, 1e-6, 100);
% display results
if exitflag == 1
fprintf('Solution: x = %f + %fi\n', real(x), imag(x));
else
fprintf('No solution found within maximum number of iterations.\n');
end
fprintf('Function value at solution: f(x) = %f + %fi\n', real(fval), imag(fval));
```
阅读全文