def map_data(data_map, axis_num): data_map = np.max(data_map, axis=axis_num) data_map -= data_map.min() data_map = data_map / data_map.max() data_map = np.array(data_map * 255, dtype=np.uint8) return data_map

时间: 2024-03-07 08:52:05 浏览: 58
这段代码的作用是将输入的二维数组经过处理,返回一个经过归一化和类型转换后的二维数组。具体来说,它的实现过程如下: 1. 使用 numpy 库中的 np.max 函数,对输入的二维数组 data_map 进行最大值池化,得到一个一维数组,其中每个元素为对应列或行中的最大值(axis_num 为 0 时对列进行最大值池化,为 1 时对行进行最大值池化)。 2. 对最大值池化后的一维数组进行归一化。具体来说,将数组中的每个元素减去数组中的最小值,得到一个新的数组,使得数组中的最小值为 0。 3. 对归一化后的数组进行再次归一化,将数组中的每个元素都除以数组中的最大值,使得数组中的最大值为 1。 4. 将归一化后的数组中的每个元素乘以 255,并强制转换为整型(dtype=np.uint8),得到一个新的二维数组,其中每个元素都是范围在 0 到 255 之间的整数。 5. 返回新的二维数组 data_map。 总之,这段代码的作用是将输入的二维数组 data_map 进行最大值池化、归一化、类型转换等处理,使得输出的二维数组符合一些特定的需求。
相关问题

使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)

#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { std::vector<double> eigen_list; MatrixXd data(6, 6); data << 1, 2, 4, 7, 6, 3, 3, 20, 1, 2, 5, 4, 2, 0, 1, 5, 8, 6, 5, 3, 3, 6, 3, 2, 6, 0, 5, 2, 19, 3, 5, 2, 4, 9, 6, 3; MatrixXd g_csi_corr = data.transpose() * data / 6.0; EigenSolver<MatrixXd> es(g_csi_corr); VectorXd eigenvalue = es.eigenvalues().real(); std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl; eigen_list.push_back(eigenvalue.maxCoeff()); eigen_list.push_back(1.22); eigen_list.push_back(-54.21); eigen_list.push_back(8.44); eigen_list.push_back(-27.83); eigen_list.push_back(33.12); //eigen_list.push_back(40.29); std::cout << "eigen_list: "; for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it) std::cout << *it << " "; std::cout << std::endl; int num1 = eigen_list.size(); MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1); VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose(); VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose(); double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff()); VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff()); double tri_threshold = eigen_a5.mean(); std::cout << "tri_threshold: " << tri_threshold << std::endl; return 0; }

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if name == 'main': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵,

好的,为了实现您的需求,您需要进行以下几个步骤: 1. 加载模型和类别标签: 您需要在代码中加载您的模型和类别标签。您可以使用之前的代码中的方式来加载它们,只需要做一些小的改动即可。例如,您需要将模型和类别标签的路径作为参数传递给您的函数。 2. 加载测试集: 您需要加载您的测试集。您可以使用 `torchvision.datasets.ImageFolder` 来加载测试集。这个函数会将每个文件夹中的所有图像文件都加载到一个 tensor 中,并自动为每个文件夹分配一个标签。 3. 进行预测: 您需要对测试集中的每个图像进行预测,并将预测结果与真实标签进行比较。您可以使用之前的代码中的方式来预测每个图像,只需要做一些小的改动即可。例如,您需要将预测结果保存到一个列表中,并将真实标签保存到另一个列表中。 4. 绘制混淆矩阵: 最后,您需要使用预测结果和真实标签来绘制混淆矩阵。您可以使用 `sklearn.metrics.confusion_matrix` 来计算混淆矩阵,并使用 `matplotlib` 来绘制它。 下面是修改后的代码示例: ``` import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix import numpy as np from model import convnext_tiny as create_model def predict_folder(model_path, json_path, folder_path): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose([ transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # load class_indict json with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() y_true = [] y_pred = [] for root, dirs, files in os.walk(folder_path): for file in files: if file.endswith(".jpg") or file.endswith(".jpeg"): img_path = os.path.join(root, file) assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # predict class with torch.no_grad(): output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() y_true.append(class_indict[os.path.basename(root)]) y_pred.append(predict_cla) # plot confusion matrix cm = confusion_matrix(y_true, y_pred) fig, ax = plt.subplots(figsize=(5, 5)) ax.imshow(cm, cmap=plt.cm.Blues, aspect='equal') ax.set_xlabel('Predicted label') ax.set_ylabel('True label') ax.set_xticks(np.arange(len(class_indict))) ax.set_yticks(np.arange(len(class_indict))) ax.set_xticklabels(class_indict.values(), rotation=90) ax.set_yticklabels(class_indict.values()) ax.tick_params(axis=u'both', which=u'both',length=0) for i in range(len(class_indict)): for j in range(len(class_indict)): text = ax.text(j, i, cm[i, j], ha="center", va="center", color="white" if cm[i, j] > cm.max() / 2. else "black") fig.tight_layout() plt.show() if __name__ == '__main__': # set the paths for the model, class_indict json, and test data folder model_path = './weights/best_model.pth' json_path = './class_indices.json' folder_path = './test_data' predict_folder(model_path, json_path, folder_path) ``` 请注意,这个函数的参数需要您自己根据您的实际情况进行设置,以匹配模型、类别标签和测试集的路径。
阅读全文

相关推荐

大家在看

recommend-type

SCSI-ATA-Translation-3_(SAT-3)-Rev-01a

本资料是SAT协议,即USB转接桥。通过上位机直接发送命令给SATA盘。
recommend-type

Surface pro 7 SD卡固定硬盘X64驱动带数字签名

针对surface pro 7内置硬盘较小,外扩SD卡后无法识别成本地磁盘,本驱动让windows X64把TF卡识别成本地硬盘,并带有数字签名,无需关闭系统强制数字签名,启动时也不会出现“修复系统”的画面,完美,无毒副作用,且压缩文件中带有详细的安装说明,你只需按部就班的执行即可。本驱动非本人所作,也是花C币买的,现在操作成功了,并附带详细的操作说明供大家使用。 文件内容如下: surfacepro7_x64.zip ├── cfadisk.cat ├── cfadisk.inf ├── cfadisk.sys ├── EVRootCA.crt └── surface pro 7将SD卡转换成固定硬盘驱动.docx
recommend-type

实验2.Week04_通过Console线实现对交换机的配置和管理.pdf

交换机,console
recommend-type

景象匹配精确制导中匹配概率的一种估计方法

基于景象匹配制导的飞行器飞行前需要进行航迹规划, 就是在飞行区域中选择出一些匹配概率高的匹配 区, 作为相关匹配制导的基准, 由此提出了估计匹配区匹配概率的问题本文模拟飞行中匹配定位的过程定义了匹 配概率, 并提出了基准图的三个特征参数, 最后通过线性分类器, 实现了用特征参数估计匹配概率的目标, 并进行了实验验证
recommend-type

Low-cost high-gain differential integrated 60 GHz phased array antenna in PCB process

Low-cost high-gain differential integrated 60 GHz phased array antenna in PCB process

最新推荐

recommend-type

mozillazg_python-pinyin_1741402107.zip

python学习资源
recommend-type

jfinal-undertow 用于开发、部署由 jfinal 开发的 web 项目

jfinal-undertow 用于开发、部署由 jfinal 开发的 web 项目
recommend-type

基于Andorid的音乐播放器项目设计(国外开源).zip

基于Andorid的音乐播放器项目设计(国外开源)实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

编程语言_Python_魔法方法_实用指南_1741403704.zip

python学习资源
recommend-type

Cyclone IV硬件配置详细文档解析

Cyclone IV是Altera公司(现为英特尔旗下公司)的一款可编程逻辑设备,属于Cyclone系列FPGA(现场可编程门阵列)的一部分。作为硬件设计师,全面了解Cyclone IV配置文档至关重要,因为这直接影响到硬件设计的成功与否。配置文档通常会涵盖器件的详细架构、特性和配置方法,是设计过程中的关键参考材料。 首先,Cyclone IV FPGA拥有灵活的逻辑单元、存储器块和DSP(数字信号处理)模块,这些是设计高效能、低功耗的电子系统的基石。Cyclone IV系列包括了Cyclone IV GX和Cyclone IV E两个子系列,它们在特性上各有侧重,适用于不同应用场景。 在阅读Cyclone IV配置文档时,以下知识点需要重点关注: 1. 设备架构与逻辑资源: - 逻辑单元(LE):这是构成FPGA逻辑功能的基本单元,可以配置成组合逻辑和时序逻辑。 - 嵌入式存储器:包括M9K(9K比特)和M144K(144K比特)两种大小的块式存储器,适用于数据缓存、FIFO缓冲区和小规模RAM。 - DSP模块:提供乘法器和累加器,用于实现数字信号处理的算法,比如卷积、滤波等。 - PLL和时钟网络:时钟管理对性能和功耗至关重要,Cyclone IV提供了可配置的PLL以生成高质量的时钟信号。 2. 配置与编程: - 配置模式:文档会介绍多种配置模式,如AS(主动串行)、PS(被动串行)、JTAG配置等。 - 配置文件:在编程之前必须准备好适合的配置文件,该文件通常由Quartus II等软件生成。 - 非易失性存储器配置:Cyclone IV FPGA可使用非易失性存储器进行配置,这些配置在断电后不会丢失。 3. 性能与功耗: - 性能参数:配置文档将详细说明该系列FPGA的最大工作频率、输入输出延迟等性能指标。 - 功耗管理:Cyclone IV采用40nm工艺,提供了多级节能措施。在设计时需要考虑静态和动态功耗,以及如何利用各种低功耗模式。 4. 输入输出接口: - I/O标准:支持多种I/O标准,如LVCMOS、LVTTL、HSTL等,文档会说明如何选择和配置适合的I/O标准。 - I/O引脚:每个引脚的多功能性也是重要考虑点,文档会详细解释如何根据设计需求进行引脚分配和配置。 5. 软件工具与开发支持: - Quartus II软件:这是设计和配置Cyclone IV FPGA的主要软件工具,文档会介绍如何使用该软件进行项目设置、编译、仿真以及调试。 - 硬件支持:除了软件工具,文档还可能包含有关Cyclone IV开发套件和评估板的信息,这些硬件平台可以加速产品原型开发和测试。 6. 应用案例和设计示例: - 实际应用:文档中可能包含针对特定应用的案例研究,如视频处理、通信接口、高速接口等。 - 设计示例:为了降低设计难度,文档可能会提供一些设计示例,它们可以帮助设计者快速掌握如何使用Cyclone IV FPGA的各项特性。 由于文件列表中包含了三个具体的PDF文件,它们可能分别是针对Cyclone IV FPGA系列不同子型号的特定配置指南,或者是覆盖了特定的设计主题,例如“cyiv-51010.pdf”可能包含了针对Cyclone IV E型号的详细配置信息,“cyiv-5v1.pdf”可能是版本1的配置文档,“cyiv-51008.pdf”可能是关于Cyclone IV GX型号的配置指导。为获得完整的技术细节,硬件设计师应当仔细阅读这三个文件,并结合产品手册和用户指南。 以上信息是Cyclone IV FPGA配置文档的主要知识点,系统地掌握这些内容对于完成高效的设计至关重要。硬件设计师必须深入理解文档内容,并将其应用到实际的设计过程中,以确保最终产品符合预期性能和功能要求。
recommend-type

【WinCC与Excel集成秘籍】:轻松搭建数据交互桥梁(必读指南)

# 摘要 本论文深入探讨了WinCC与Excel集成的基础概念、理论基础和实践操作,并进一步分析了高级应用以及实际案例。在理论部分,文章详细阐述了集成的必要性和优势,介绍了基于OPC的通信机制及不同的数据交互模式,包括DDE技术、VBA应用和OLE DB数据访问方法。实践操作章节中,着重讲解了实现通信的具体步骤,包括DDE通信、VBA的使
recommend-type

华为模拟互联地址配置

### 配置华为设备模拟互联网IP地址 #### 一、进入接口配置模式并分配IP地址 为了使华为设备能够模拟互联网连接,需先为指定的物理或逻辑接口设置有效的公网IP地址。这通常是在广域网(WAN)侧执行的操作。 ```shell [Huawei]interface GigabitEthernet 0/0/0 # 进入特定接口配置视图[^3] [Huawei-GigabitEthernet0/0/0]ip address X.X.X.X Y.Y.Y.Y # 设置IP地址及其子网掩码,其中X代表具体的IPv4地址,Y表示对应的子网掩码位数 ``` 这里的`GigabitEth
recommend-type

Java游戏开发简易实现与地图控制教程

标题和描述中提到的知识点主要是关于使用Java语言实现一个简单的游戏,并且重点在于游戏地图的控制。在游戏开发中,地图控制是基础而重要的部分,它涉及到游戏世界的设计、玩家的移动、视图的显示等等。接下来,我们将详细探讨Java在游戏开发中地图控制的相关知识点。 1. Java游戏开发基础 Java是一种广泛用于企业级应用和Android应用开发的编程语言,但它的应用范围也包括游戏开发。Java游戏开发主要通过Java SE平台实现,也可以通过Java ME针对移动设备开发。使用Java进行游戏开发,可以利用Java提供的丰富API、跨平台特性以及强大的图形和声音处理能力。 2. 游戏循环 游戏循环是游戏开发中的核心概念,它控制游戏的每一帧(frame)更新。在Java中实现游戏循环一般会使用一个while或for循环,不断地进行游戏状态的更新和渲染。游戏循环的效率直接影响游戏的流畅度。 3. 地图控制 游戏中的地图控制包括地图的加载、显示以及玩家在地图上的移动控制。Java游戏地图通常由一系列的图像层构成,比如背景层、地面层、对象层等,这些图层需要根据游戏逻辑进行加载和切换。 4. 视图管理 视图管理是指游戏世界中,玩家能看到的部分。在地图控制中,视图通常是指玩家的视野,它需要根据玩家位置动态更新,确保玩家看到的是当前相关场景。使用Java实现视图管理时,可以使用Java的AWT和Swing库来创建窗口和绘制图形。 5. 事件处理 Java游戏开发中的事件处理机制允许对玩家的输入进行响应。例如,当玩家按下键盘上的某个键或者移动鼠标时,游戏需要响应这些事件,并更新游戏状态,如移动玩家角色或执行其他相关操作。 6. 游戏开发工具 虽然Java提供了强大的开发环境,但通常为了提升开发效率和方便管理游戏资源,开发者会使用一些专门的游戏开发框架或工具。常见的Java游戏开发框架有LibGDX、LWJGL(轻量级Java游戏库)等。 7. 游戏地图的编程实现 在编程实现游戏地图时,通常需要以下几个步骤: - 定义地图结构:包括地图的大小、图块(Tile)的尺寸、地图层级等。 - 加载地图数据:从文件(如图片或自定义的地图文件)中加载地图数据。 - 地图渲染:在屏幕上绘制地图,可能需要对地图进行平滑滚动(scrolling)、缩放(scaling)等操作。 - 碰撞检测:判断玩家或其他游戏对象是否与地图中的特定对象发生碰撞,以决定是否阻止移动等。 - 地图切换:实现不同地图间的切换逻辑。 8. JavaTest01示例 虽然提供的信息中没有具体文件内容,但假设"javaTest01"是Java项目或源代码文件的名称。在这样的示例中,"javaTest01"可能包含了一个或多个类(Class),这些类中包含了实现地图控制逻辑的主要代码。例如,可能存在一个名为GameMap的类负责加载和渲染地图,另一个类GameController负责处理游戏循环和玩家输入等。 通过上述知识点,我们可以看出实现一个简单的Java游戏地图控制不仅需要对Java语言有深入理解,还需要掌握游戏开发相关的概念和技巧。在具体开发过程中,还需要参考相关文档和API,以及可能使用的游戏开发框架和工具的使用指南。
recommend-type

【超市销售数据深度分析】:从数据库挖掘商业价值的必经之路

# 摘要 本文全面探讨了超市销售数据分析的方法与应用,从数据的准备、预处理到探索性数据分析,再到销售预测与市场分析,最后介绍高级数据分析技术在销售领域的应用。通过详细的章节阐述,本文着重于数据收集、清洗、转换、可视化和关联规则挖掘等关键步骤。
recommend-type

在ubuntu中安装ros时出现updating datebase of manual pages...怎么解决

在Ubuntu中安装ROS时如果遇到“updating database of manual pages”的提示,并不是错误信息,而是系统正在更新命令手册数据库的一部分正常过程。这个步骤是为了确保所有已安装软件包的文档都被正确索引并可供访问。 但是如果你觉得该进程卡住或花费了异常长的时间,你可以尝试以下几个解决方案: 1. **强制终止此操作**:可以先按Ctrl+C停止当前命令,然后继续下一步骤;不过这不是推荐的做法,因为这可能会导致部分文件未完成配置。 2. **检查磁盘空间**:确认是否有足够的硬盘空间可用,有时这个问题可能是由于存储不足引起的。 ```bash