select substring(page_type,1,3) as page_type, count(*) as count_num, round((count(*)/771156.0)*100,4) as weights from law group by substring(page_type,1,3) order by count_num desc;改成sparksql
时间: 2024-03-06 14:47:20 浏览: 55
可以使用以下Spark SQL语句将原始SQL转换为Spark SQL:
```
SELECT SUBSTRING(page_type,1,3) AS page_type, COUNT(*) AS count_num, ROUND((COUNT(*)/771156.0)*100,4) AS weights
FROM law
GROUP BY SUBSTRING(page_type,1,3)
ORDER BY count_num DESC;
```
注意,在Spark SQL中,字符串函数和数学函数的语法可能略有不同,因此需要适当调整原始SQL的语法。另外,如果需要在Spark SQL中读取数据,需要首先将数据加载到Spark中,例如使用Spark的DataFrame或Dataset API。
相关问题
select substring(page_type,1,6) as page_type, count(*) as count_num, round((count(*)/411665.0)*100,4) as weights from law_part where page_type_part=101 group by substring(page_type,1,6) order by count_num desc;改成sparksql
下面是将该SQL语句转换为Spark SQL的代码:
```
SELECT SUBSTRING(page_type,1,6) AS page_type, COUNT(*) AS count_num, ROUND((COUNT(*)/411665.0)*100,4) AS weights
FROM law_part
WHERE page_type_part=101
GROUP BY SUBSTRING(page_type,1,6)
ORDER BY count_num DESC;
```
转换为Spark SQL后的代码:
```scala
import org.apache.spark.sql.functions._
val resultDF = law_part
.filter($"page_type_part" === 101)
.groupBy(substring($"page_type", 1, 6).as("page_type"))
.agg(count("*").as("count_num"))
.withColumn("weights", round((col("count_num")/411665.0)*100, 4))
.orderBy(desc("count_num"))
```
其中,`law_part`是你的数据表,可以通过`spark.read.jdbc()`或其他方式加载数据。
select substring(page_type,1,7) as page_type, visiturl, count(*) as count_num from law where visiturl like '%faguizt%' and page_type like '%199%' ;改成sparksql
可以将该SQL语句转换成Spark SQL语句如下:
```
SELECT SUBSTRING(page_type, 1, 7) AS page_type, visiturl, COUNT(*) AS count_num
FROM law
WHERE visiturl LIKE '%faguizt%' AND page_type LIKE '%199%'
GROUP BY SUBSTRING(page_type, 1, 7), visiturl;
```
在Spark SQL中,GROUP BY子句中的所有列都必须在SELECT子句中指定,因此需要将SUBSTRING(page_type, 1, 7)和visiturl都包含在SELECT子句中。
阅读全文