传输的信息段101101 Gx = X4+X3+1
时间: 2023-12-15 20:05:20 浏览: 152
我理解你想要问的是,给定一个信息段101101,如何计算出对应的Gx校验码?
假设生成多项式为G(x) = X^4 + X^3 + 1,我们可以用CRC校验的方法来计算出对应的校验码。
首先,将信息段左侧填充4个0,得到0101101。然后,将生成多项式左侧填充3个0,得到1001。
接下来,将0101101除以1001,得到商为0101,余数为0010。将余数0010作为校验码,将信息段和校验码拼接起来,得到最终的编码结果1011010010。
因此,给定信息段101101,对应的Gx校验码为0010。
相关问题
方程组:x1a1-x2a2=0;x2a3-x3a4=0;x3a5-x4a6=0;x4a7-x1a8=0;约束方程x1+x2+x3+x4=4。其中a1到a8分别是:152.967061,177.396563,147.882339,174.300663,89.771655,119.448549,98.088508,114.954773。要求x1+x2+x3+x4的值相加为4,且解出来的x1、x2、x3、x4必须大于0。请用c++代码编写程序解出x1,x2,x3,x4的值。
以下是使用C++解方程组的代码:
```c++
#include <iostream>
#include <cmath>
using namespace std;
double a[8] = {152.967061, 177.396563, 147.882339, 174.300663, 89.771655, 119.448549, 98.088508, 114.954773};
double f(double x1, double x2, double x3, double x4) {
return pow(x1 * a[0] / x2 / a[1], 0.5) * pow(x2 * a[2] / x3 / a[3], 0.5) * pow(x3 * a[4] / x4 / a[5], 0.5) * pow(x4 * a[6] / x1 / a[7], 0.5);
}
double g(double x1, double x2, double x3, double x4) {
return x1 + x2 + x3 + x4 - 4;
}
int main() {
double x1 = 1, x2 = 1, x3 = 1, x4 = 1;
double eps = 1e-8;
double step = 0.001;
while (abs(g(x1, x2, x3, x4)) > eps || x1 <= 0 || x2 <= 0 || x3 <= 0 || x4 <= 0) {
double fx1 = f(x1 + step, x2, x3, x4);
double fx2 = f(x1, x2 + step, x3, x4);
double fx3 = f(x1, x2, x3 + step, x4);
double fx4 = f(x1, x2, x3, x4 + step);
double gx1 = g(x1 + step, x2, x3, x4);
double gx2 = g(x1, x2 + step, x3, x4);
double gx3 = g(x1, x2, x3 + step, x4);
double gx4 = g(x1, x2, x3, x4 + step);
double dx1 = step / fx1 * f(x1, x2, x3, x4) * gx1;
double dx2 = step / fx2 * f(x1, x2, x3, x4) * gx2;
double dx3 = step / fx3 * f(x1, x2, x3, x4) * gx3;
double dx4 = step / fx4 * f(x1, x2, x3, x4) * gx4;
x1 -= dx1;
x2 -= dx2;
x3 -= dx3;
x4 -= dx4;
}
cout << "x1 = " << x1 << endl;
cout << "x2 = " << x2 << endl;
cout << "x3 = " << x3 << endl;
cout << "x4 = " << x4 << endl;
return 0;
}
```
在该程序中,我们使用了牛顿迭代法求解方程组。我们定义了一个目标函数f(x1, x2, x3, x4),它是方程组中每个方程的左右两边相乘起来的结果。我们还定义了一个约束条件g(x1, x2, x3, x4),它是四个变量之和减4的结果,表示四个变量之和必须为4。我们使用牛顿迭代法不断更新x1、x2、x3、x4的值,直到约束条件g(x1, x2, x3, x4)满足要求并且x1、x2、x3、x4大于0为止。最终的解就是x1、x2、x3、x4的值。
阅读全文