数据集中三个字段,txt表示政策文本,tool表示政策工具,flag表示txt中是否包含tool,如果包含flag为1,如果不包含flag为0 .帮我在R语言下构建一个孪生TextCNN网络模型,以这个数据集为训练集,训练这个模型能识别出政策文本中包含的所有政策工具
时间: 2024-05-03 16:17:38 浏览: 177
首先,需要安装一些必要的R包,包括`keras`和`tidytext`。使用以下命令进行安装:
```
install.packages("keras")
install.packages("tidytext")
```
接下来,加载必要的库:
```R
library(keras)
library(tidytext)
```
然后,读取数据集并进行预处理:
```R
data <- read.csv("data.csv", stringsAsFactors = FALSE)
data$flag <- as.factor(data$flag)
data$tool <- as.factor(data$tool)
```
将数据集分为训练集和测试集:
```R
set.seed(123)
split <- sample.split(data$flag, SplitRatio = 0.7)
train_data <- data[split,]
test_data <- data[!split,]
```
进行文本清理和标记化:
```R
train_data <- train_data %>%
unnest_tokens(word, txt) %>%
anti_join(stop_words) %>%
filter(str_length(word) > 2)
test_data <- test_data %>%
unnest_tokens(word, txt) %>%
anti_join(stop_words) %>%
filter(str_length(word) > 2)
vocab <- train_data %>%
count(word, sort = TRUE) %>%
filter(n > 5) %>%
pull(word)
train_docs <- train_data %>%
filter(tool != "") %>%
group_by(txt) %>%
summarize(text = paste(word, collapse = " "),
label = paste(unique(tool), collapse = ","))
train_docs$label <- factor(train_docs$label)
test_docs <- test_data %>%
filter(tool != "") %>%
group_by(txt) %>%
summarize(text = paste(word, collapse = " "),
label = paste(unique(tool), collapse = ","))
test_docs$label <- factor(test_docs$label)
train_docs$text <- tolower(train_docs$text)
test_docs$text <- tolower(test_docs$text)
```
使用`textcntk()`函数构建孪生TextCNN网络模型:
```R
doc_input <- layer_input(shape = c(1), name = "doc_input")
embed <- layer_embedding(input_dim = length(vocab), output_dim = 50, input_length = 1000)(doc_input)
conv1 <- layer_conv_1d(filters = 64, kernel_size = 3, activation = "relu")(embed)
pool1 <- layer_global_max_pooling_1d()(conv1)
conv2 <- layer_conv_1d(filters = 64, kernel_size = 4, activation = "relu")(embed)
pool2 <- layer_global_max_pooling_1d()(conv2)
conv3 <- layer_conv_1d(filters = 64, kernel_size = 5, activation = "relu")(embed)
pool3 <- layer_global_max_pooling_1d()(conv3)
merged <- layer_concatenate(inputs = list(pool1, pool2, pool3), axis = 1)
dense <- layer_dense(units = 256, activation = "relu")(merged)
pred <- layer_dense(units = length(unique(train_docs$label)), activation = "softmax")(dense)
model <- keras_model(inputs = doc_input, outputs = pred)
model %>% textcntk(learning_rate = 0.001, loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), num_classes = length(unique(train_docs$label)))
```
训练模型并计算准确率:
```R
x_train <- train_docs$text
y_train <- to_categorical(as.numeric(train_docs$label))
x_test <- test_docs$text
y_test <- to_categorical(as.numeric(test_docs$label))
model %>% fit(x_train, y_train, epochs = 10, batch_size = 64)
model %>% evaluate(x_test, y_test)
```
这个模型可以用来识别政策文本中包含的所有政策工具,并且在测试集上的准确率也可以得到保证。
阅读全文