这段代码有什么错误def forward(self,x): num_nodes = x.size(1) # sub_graph size batch_size = x.size(0) W = torch.cat([self.W] * batch_size, dim=0) representation = torch.matmul(x, W) r_sum = torch.sum(representation, dim=-1, keepdim=False) b = torch.zeros([batch_size, num_nodes]) b = Variable(b) one = torch.ones_like(r_sum) zero = torch.zeros_like(r_sum) label = torch.clone(r_sum) label = torch.where(label == 0, one, zero) b.data.masked_fill_(label.bool(), -float('inf')) num_iterations = 3 for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = representation_similarity return representation_global.squeeze(dim=1)
时间: 2024-03-14 16:48:12 浏览: 117
这段代码中存在一个错误。在for循环中,代码更新了变量b,但是在更新后没有再次进行softmax操作,导致后续的计算结果不正确。因此,需要在for循环中,在更新b后再次进行softmax操作,如下所示:
```
for i in range(num_iterations):
c = torch.nn.functional.softmax(b, dim=-1)
weight_coeff = c.unsqueeze(dim=1)
representation_global = torch.matmul(weight_coeff, representation)
representation_global_all = torch.cat([representation_global] * num_nodes, dim=1)
representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1)
representation_similarity.data.masked_fill_(label.bool(), -float('inf'))
b = torch.nn.functional.softmax(representation_similarity, dim=-1) # 进行softmax操作
```
这样修改后,该段代码的功能应该能够正常运行。
相关问题
下面这段代码的作用是什么def setup_model(self): self.enumerate_unique_labels_and_targets() self.model = CasSeqGCN(self.args, self.number_of_features + self.args.number_of_hand_features, self.number_of_nodes) #给当前类中模型主体进行初始化,初始化为上面的模型 def create_batches(self): N = len(self.graph_paths) train_start, valid_start, test_start = \ 0, int(N * self.args.train_ratio), int(N * (self.args.train_ratio + self.args.valid_ratio)) train_graph_paths = self.graph_paths[0:valid_start] valid_graph_paths = self.graph_paths[valid_start:test_start] test_graph_paths = self.graph_paths[test_start: N] self.train_batches, self.valid_batches, self.test_batches = [], [], [] for i in range(0, len(train_graph_paths), self.args.batch_size): self.train_batches.append(train_graph_paths[i:i+self.args.batch_size]) for j in range(0, len(valid_graph_paths), self.args.batch_size): self.valid_batches.append(valid_graph_paths[j:j+self.args.batch_size]) for k in range(0, len(test_graph_paths), self.args.batch_size): self.test_batches.append(test_graph_paths[k:k+self.args.batch_size]) def create_data_dictionary(self, edges, features): """ creating a data dictionary :param target: target vector :param edges: edge list tensor :param features: feature tensor :return: """ to_pass_forward = dict() to_pass_forward["edges"] = edges to_pass_forward["features"] = features return to_pass_forward def create_target(self, data): """ Target createn based on data dicionary. :param data: Data dictionary. :return: Target size """ return torch.tensor([data['activated_size']])
这段代码是一个类中的三个方法:
1. `setup_model`: 这个方法初始化了类中的模型,使用了一个叫做 `CasSeqGCN` 的模型,并将该模型保存在了当前类的 `model` 属性中。
2. `create_batches`: 这个方法将读入的数据集划分成了三部分(训练集、验证集、测试集),并将每一部分划分成多个 batch。这个方法返回了三个 batch 列表,分别对应训练集、验证集和测试集。
3. `create_data_dictionary` 和 `create_target`: 这两个方法用于将输入的边和特征数据转换成 PyTorch 可以处理的格式。其中 `create_target` 用于创建目标向量,其大小为 1 维,对应了数据字典中的 `activated_size`。
阅读全文